The role of zinc in the synthesis and metabolism of thyroid hormones
https://doi.org/10.14341/ket12697
Abstract
About one third of the world’s population is deficient in one or more micronutrients, with the most common deficiencies in iodine, iron, zinc, vitamin A and folate. Deficiency of one or more essential vitamins and minerals is usually the result of poor nutrition and / or insufficient absorption of micronutrients as a result of infectious and inflammatory diseases. It is possible that the deficiency of certain trace elements, in turn, can aggravate iodine deficiency and contribute to dysfunction of the thyroid gland. There are assumptions about the relationship between the content of iodine, selenium, iron, zinc in the human body and the level of thyroid hormones. Zinc is a vital trace element for all living organisms, participating in many biochemical processes in cells, including cell differentiation and division, its growth, cell transport, transcription, protein synthesis, RNA and DNA synthesis, and DNA replication. Its role as an antioxidant and participation in the functioning of both innate (T, NK and NKT cells) and adaptive immunity (anti-inflammatory cytokines) are very important. This review will consider the role of zinc in the synthesis and metabolism of thyroid hormones.
About the Authors
Evgeniya S. SenyushkinaRussian Federation
MD; eLibrary SPIN: 4250-5123.
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
not
Ekaterina А. Troshina
Russian Federation
MD, PhD, Professor; eLibrary SPIN: 8821-8990
11 Dm. Ulyanova street, 117036 Moscow
Competing Interests:
not
References
1. Jain RB. Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biological Trace Element Research. 2014;159(1-3):87-98. doi: https://doi.org/10.1007/s12011-014-9992-9
2. Sangyong C, Xian L, Zui P. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica. 2018:39(7):1120-1132. doi: https://doi.org/10.1038/aps.2018.25
3. Livingstone C. Zinc: Physiology, Deficiency, and Parenteral Nutrition. Nutrition in Clinical Practice. 2015:30(3):371-382. doi: https://doi.org/10.1177/0884533615570376
4. Maret W. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals. 2011:24(3):411-418. doi: https://doi.org/10.1007/s10534-010-9406-1
5. Bossowski A, Stożek K, Rydzewska M, et al. Expression of zinc transporter 8 in thyroid tissues from patients with immune and non-immune thyroid diseases. Autoimmunity. 2020:53(7):376-384. doi: https://doi.org/10.1080/08916934.2020.1815194
6. Ihnatowicz P, Drywień M, Wątor P, et al. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Annals of agricultural and environmental medicine. 2020:27(2):184-193. doi: https://doi.org/10.26444/aaem/112331
7. Rohner F, Zimmermann M, Jooste P, et al. Biomarkers of Nutrition for Development —Iodine Review. J Nutr. 2014;144(8):1322-1342. doi: https://doi.org/10.3945/jn.113.181974.
8. Mahmoodianfard S, Vafa M, Golgiri F, et al. Effects of Zinc and Selenium Supplementation on Thyroid Function in Overweight and Obese Hypothyroid Female Patients: A Randomized Double-Blind Controlled Trial. Journal of the American College of Nutrition. 2015:34(5):391-399. doi: https://doi.org/10.1080/07315724.2014.926161
9. Troshina EA, Senyushkina ES, Terekhova MA. The role of selenium in the pathogenesis of thyroid disease. Clin Exp Thyroidol. 2019;14(4):192-205. (In Russ.). doi: https://doi.org/10.14341/ket10157
10. O’Kane SM, Mulhern MS, Pourshahidi LK. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutrition Research Reviews. 2018:1;76(6):418-431. doi: https://doi.org/10.1093/nutrit/nuy008
11. Rasic-Milutinovic Z, Jovanovic D, Bogdanovic G, et al. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism. Experimental and Clinical Endocrinology & Diabetes. 2017:125(2):79-85. doi: https://doi.org/10.1055/s-0042-116070
12. Jian L, Yun L, Dongdong K, et al. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc. Environmental Science and Pollution Research. 2016:23(10):9843–9851. doi: https://doi.org/10.1007/s11356-016-6095-5
13. Paulazo MA, Klecha AJ, Sterle HA, et al. Hypothyroidism-related zinc deficiency leads to suppression of T lymphocyte activity. Endocrine. 2019:66(2):266-277. doi: https://doi.org/10.1007/s12020-019-01936-7
14. Emami A, Mohammad RN, Shekarriz R, et al. Micronutrient status (calcium, zinc, vitamins D and E) in patients with medullary thyroid carcinoma: A cross-sectional study. Nutrition. 2017;41:86-89. doi: https://doi.org/10.1016/j.nut.2017.04.004
15. Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism. 2015;66(2):22-33. doi: https://doi.org/10.1159/000371618
16. Harold H. Sandstead Zinc nutrition from discovery to global health impact. Advances in Food and Nutrition Research. 2012;3(5):718-719. doi: https://doi.org/10.3945/an.112.002485
17. Sur U, Erkekoglu P, Bulus AD, et al. Oxidative stress markers, trace elements, and endocrine disrupting chemicals in children with Hashimoto’s thyroiditis. Toxicology Mechanisms and Methods. 2019;29(9):633-643. doi: https://doi.org/10.1080/15376516.2019.1646367
18. Kawicka A, Regulska-Ilow B. Metabolic disorders and nutritional status in autoimmune thyroid diseases. Postępy Higieny i Medycyny Doświadczalnej. 2015;69:80–90. doi: https://doi.org/10.5604/17322693.1136383.
19. Chasapis CT, Ntoupa PA, Spiliopoulou CA, et al. Recent aspects of the effects of zinc on human health. Archives of Toxicology. 2020;94(5):1443-1460. doi: https://doi.org/10.1007/s00204-020-02702-9
20. Hess SY. The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Pract Res Clin Endocrinol Metab. 2010;24(1):117-132. doi: https://doi.org/10.1016/j.beem.2009.08.012
21. Kravchenko VI, Andrusyshyna IM, Luzanchuk IA, et al. Association Between Thyroid Hormone Status and Trace Elements in Serum of Patients with Nodular Goiter. Biological Trace Element Research. 2019;196(2):393-399. doi: https://doi.org/10.1007/s12011-019-01943-9
22. Kudabayeva KI, Koshmaganbetova GK, Mickuviene N, et al. Hair Trace Elements are Associated with Increased Thyroid Volume in Schoolchildren with Goiter. Biol Trace Elem Res. 2016;174(2):261-266. doi: https://doi.org/10.1007/s12011-016-0711-6
23. Zakrzewska E, Zegan M, Michota-Katulska E. Dietary recommendations in hypothyroidism with coexistence of Hashimoto’s disease. Bromat Chem Toksykol. 2015;18:117–127.
24. Jonsdottir B, Jonsson I, Lantz M, Prevalence of diabetes and presence of autoantibodies against zinc transporter 8 and glutamic decarboxylase at diagnosis and at follow up of Graves’ disease. Endocrine. 2019;64(1):48-54. doi: https://doi.org/10.1007/s12020-019-01852-w
25. Mocchegiani E, Romeo J, Malavolta M, et al. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Omaha). 2013;35(3):839-860. doi: https://doi.org/10.1007/s11357-011-9377-3
26. Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics. 2014;6(7):1175-1180. doi: https://doi.org/10.1039/c3mt00353a
27. Yu M, Lee WW, Tomar D, et al. Regulation of T cell receptor signaling by activationinduced zinc influx. Journal of Experimental Medicine. 2011;208:775–785. doi: https://doi.org/10.1084/jem.20100031
28. Usama U, Jaffar Khan M, Fatima S. Role of Zinc in Shaping the Gut Microbiome; Proposed Mechanisms and Evidence from the Literature. J Gastrointest Dig Syst. 2018;08(01):839-860. doi: https://doi.org/10.4172/2161-069X.1000548
Supplementary files
|
1. Fig. 1. Simplified pathways for the cellular distribution of zinc ions (Zn2 +), compartmentalization and signaling. (1) Extracellular signals generate reactive particles (NO, peroxide) that react with the zinc / thiolate (Zn / S) in metallothioneins (MT) and release zinc ions (Zn2 +) as effectors of cellular targets. (2) Extracellular signals also stimulate the Zip7 zinc transporter at the endoplasmic reticulum (ER) membrane and increase the pool of cellular zinc ions (Zn2 +). Zinc ions (Zn2 +) are transported into the ER (3) or the Golgi apparatus, which form exovesicles (4) for extracellular targets or vesicles that are separated from the plasma membrane with the formation of extracellular matrix vesicles (5) [4]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(151KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Expression of ZnT8 protein in thyroid follicular cells and C-cells. Magn 400. (adapted from Bossowski A, Stożek K, Rydzewska M, et al. Expression of zinc transporter 8 in thyroid tissues from patients with immune and non immune thyroid diseases. Autoimmunity. 2020 Nov; 53 (7): 376-384. doi: 10.1080 / 08916934.2020.1815194). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(479KB)
|
Indexing metadata ▾ |
Review
For citations:
Senyushkina E.S., Troshina E.А. The role of zinc in the synthesis and metabolism of thyroid hormones. Clinical and experimental thyroidology. 2020;16(3):25-30. (In Russ.) https://doi.org/10.14341/ket12697

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).