Preview

Clinical and experimental thyroidology

Advanced search

Endogenous and exogenous interferences in thyroid function immunoassays

https://doi.org/10.14341/ket12698

Abstract

Laboratory diagnosis of endocrine diseases has undergone many important changes over the past decades, despite the progress of thyroid function immunoassays technologies interferences cannot be completely excluded. These interferences can affect measurement of analyte which leads to misinterpretation and subsequent wrong clinical decisions, the probability of which is about 1%. However, the scale of the problem may be greater due to the lack of awareness to the problem among doctors and the lack of laboratory screening for interfering factors. These factors can be both endogenous and exogenous, bind both to antibodies to the analyte and to the reagent in the test system. The specificity of the immunoassay depends not only on the binding properties of antibodies, the activity of reagent, but also on the composition of the test system and the format of the methodology (non-competitive two-site or “sandwich” and competitive assays).


This review provides a description of the main interferences that can affect the measurement of thyroid hormones, in particular thyroid stimulating hormone, free thyroxine and triiodothyronine, calcitonin, and demonstrates clinical cases reported in the literature over the past few years.

About the Authors

Ekaterina I. Kim
Endocrinology Research Centre
Russian Federation

Clinical resident; eLibrary SPIN: 1628-2139.


11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

not



Diana А. Dimitrova
Endocrinology Research Centre
Russian Federation

M.D.; eLibrary SPIN: 5618-8971.


11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

not



Diana A. Dimitrova
Endocrinology Research Centre
Russian Federation

eLibrary SPIN: 5618-8971.


11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

not



Nino N. Katamadze
Endocrinology Research Centre
Russian Federation

Clinical resident, eLibrary SPIN: 6755-9320.


Dmitry Ulyanova street 11 bld 2, 117036 Moscow


Competing Interests:

not



Tamara S. Dzantieva
Endocrinology Research Centre
Russian Federation

Clinical resident; eLibrary SPIN: 3429-6849.


Dmitry Ulyanova street 11 bld 2, 117036 Moscow


Competing Interests:

not



References

1. Nerenz R. Thyroid function testing. Clinical Chemical Trainee Council. 2017.

2. Koulouri O, Moran C, Halsall D? at al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab. 2013;27(6):745-762. doi: https://doi.org/10.1016/j.beem.2013.10.003

3. Dufour DR. Laboratory tests of thyroid function: uses and limitations. Endocrinol Metab Clin North Am. 2007;36(3):579-594. doi: https://doi.org/10.1016/j.ecl.2007.04.003.

4. Cho YY, Song JS, Park HD, et al. First Report of Familial Dysalbuminemic Hyperthyroxinemia With an ALB Variant. Annals of Laboratory Medicine. 2017;37(1):63-65. doi: https://doi.org/10.3343/alm.2017.37.1.63

5. Berson SA, Yalow RS. General principles of radioimmunoassay. Clin Chim Acta. 2006;369(2):125-143. doi: https://doi.org/10.1016/j.cca.2006.05.002

6. Becker KL, Nylén ES, White JC, et al. Procalcitonin and the Calcitonin Gene Family of Peptides in Inflammation, Infection, and Sepsis: A Journey from Calcitonin Back to Its Precursors. J Clin Endocrinol Metab. 2004;89(4):1512-1525. doi: https://doi.org/10.1210/jc.2002-021444

7. Niccoli P, Conte-Devolx B, Lejeune PJ, et al. Les hypercalcitoninémies en dehors des cancers médullaires de la thyroïde [Hypercalcitoninemia in conditions other than medullary cancers of the thyroid]. Ann Endocrinol. 1996;57(1):15-21.

8. Trimboli P, Giovanella L, Crescenzi A, et al. Medullary thyroid cancer diagnosis: An appraisal. Eisele DW, ed. Head Neck. 2014;36(8):1216-1223. doi: https://doi.org/10.1002/hed.23449

9. Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567-610. doi: https://doi.org/10.1089/thy.2014.0335

10. McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid. 2013;23(1):14-24. doi: https://doi.org/10.1089/thy.2012.0374

11. Bluszcz GA, Bednarczuk T, Bartoszewicz Z, et al. Clinical utility of TSH receptor antibody levels in Graves’ orbitopathy: a comparison of two TSH receptor antibody immunoassays. Central-european Journal of Immunology. 2018;43(4):405-412. doi: https://doi.org/10.5114/ceji.2018.80224

12. Frank CU, Braeth S, Dietrich JW, et al. Bridge Technology with TSH Receptor Chimera for Sensitive Direct Detection of TSH Receptor Antibodies Causing Graves’ Disease: Analytical and Clinical Evaluation. Horm Metab Res. 2015;47(12):880-888. doi: https://doi.org/10.1055/s-0035-1554662

13. Mills F, Jeffery J, Mackenzie P, et al. An immunoglobulin G complexed form of thyroid-stimulating hormone (macro thyroid-stimulating hormone) is a cause of elevated serum thyroid-stimulating hormone concentration. Ann Clin Biochem. 2013;50(5):416-420. doi: https://doi.org/10.1177/0004563213476271

14. Hattori N, Ishihara T, Shimatsu A. Variability in the detection of macro TSH in different immunoassay systems. Eur J Endocrinol. 2016;174(1):9-15 doi: https://doi.org/10.1530/eje-15-0883

15. Biktagirova EM, Vagapova GR, Semakov GP, et al. Detection of macro-thyrotropinaemia in patients with hashimotos thyroiditis and subclinical hypothyroidism. Meditsinskaya immunologiya. 2019;21(6):1063-1072. (In Russ.). doi: https://doi.org/10.15789/1563-0625-2019-6-1063-1072

16. Zempleni J, Kuroishi T. Biotin. Advances in Nutrition. 2012;3(2):213-214. doi: https://doi.org/10.3945/an.111.001305

17. Waldrop GL, Holden HM, St Maurice M. The enzymes of biotin dependent CO₂ metabolism: what structures reveal about their reaction mechanisms. Protein Sci. 2012;21(11):1597-1619. doi: https://doi.org/10.1002/pro.2156

18. Trüeb R. Serum biotin levels in women complaining of hair loss. Int J Trichology. 2016;8(2):73-77. doi: https://doi.org/10.4103/0974-7753.188040

19. National Academy of Sciences. Dietary reference intakes: vitamins [Internet]. Available from: www.nationalacademies.org/hmd/media/Files/Activity%20Files/Nutrition/DRIs/DRI_Vitamins.pdf. Accessed 4 June 2017

20. León-Del-Río, A. Biotin in metabolism, gene expression and human disease. Journal of Inherited Metabolic Disease. 2019;42(4):647-654 doi: https://doi.org/10.1002/jimd.12073

21. Piketty ML, Polak M, Flechtner I, et al. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: the problem of biotin intake and related interferences. Clin Chem Lab Med. 2017;55(6):780-788 doi: https://doi.org/10.1515/cclm-2016-0606

22. Bowen R, Benavides R, Colon-Franco, et al. Best practices in mitigating the risk of biotin interference with laboratory testing. Clinical Biochemistry. 2019;74:1-11 doi: https://doi.org/10.1016/j.clinbiochem.2019.08.012

23. Favresse J, Burlacu MC, Maiter D, et al. Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr Rev. 2018;39(5):830-850. doi: https://doi.org/10.1210/er.2018-00119

24. Colon PJ, Greene DN. Biotin interference in clinical immunoassays. J App Lab Med. 2018;2(6):941–951 doi: https://doi.org/10.1373/jalm.2017.024257

25. Geiseler D, Ritter M. Effect of sample dilution on measurements of free (unbound) hormones. Clin Chem. 1984;30(1):28-32. doi: https://doi.org/10.1093/clinchem/30.1.28

26. Trambas C, Lu Z, Yen T, et al. Depletion of biotin using streptavidin-coated microparticles: a validated solution to the problem of biotin interference in streptavidin-biotin immunoassays. Ann Clin Biochem. 2018;55(2):216-226. doi: https://doi.org/10.1177/0004563217707783

27. Zerback R, Imdahl R, Albert G, et al. Performance evaluation of a new troponin T-high sensitive assay with increased tolerance to biotin. Clin. Chim. Acta. 2019;493(1):197 doi: https://doi.org/10.1016/j.cca.2019.03.409

28. Peltier L, Massart C, Moineau MP, et al. Anti-streptavidin interferences in Roche thyroid immunoassays: a case report. Clin Chem Lab Med. 2016;54(1):e11–e14 doi: https://doi.org/10.1515/cclm-2015-0350

29. Rulander NJ, Cardamone D, Senior M, et al. Interference From Anti-Streptavidin Antibody. Arch Pathol Lab Med. 2013;137(8):1141-1146. doi: https://doi.org/10.5858/arpa.2012-0270-CR

30. Favresse J, Lardinois B, Nassogne MC, et al. Anti-streptavidin antibodies mimicking heterophilic antibodies in thyroid function tests. Clin Chem Lab Med. 2018;56(7):e160-e163. doi: https://doi.org/10.1515/cclm-2017-1027

31. Lam L, Bagg W, Smith G, et al. Apparent Hyperthyroidism Caused by Biotin-Like Interference from IgM Anti-Streptavidin Antibodies. Thyroid. 2018;28(8):1063–1067. doi: https://doi.org/10.1089/thy.2017.0673

32. Ando T, Yasui J, Inokuchi N, et al. Non-specific activities against ruthenium crosslinker as a new cause of assay interference in an electrochemilluminescent immunoassay. Intern Med. 2007;46(15):1225-1229. doi: https://doi.org/10.2169/internalmedicine.46.0188

33. Sapin R, Agin A, Gasser F. Efficacy of a new blocker against anti-ruthenium antibody interference in the Elecsys free triiodothyronine assay. Clin Chem Lab Med. 2007;45(3):416-418. doi: https://doi.org/10.1515/CCLM.2007.064

34. Favresse J, Paridaens H, Pirson N, et al. Massive interference in free T4 and free T3 assays misleading clinical judgment. Clin Chem Lab Med. 2017;55(4):e84-e86. doi: https://doi.org/10.1515/cclm-2016-0255

35. Després N, Grant AM. Antibody interference in thyroid assays: A potential for clinical misinformation. Clin Chem. 1998;44(3):440-454. doi: https://doi.org/10.1093/clinchem/44.3.440

36. Sakata S, Matsuda M, Ogawa T, et al. Prevalence of thyroid hormone autoantibodies in healthy subjects. Clin Endocrinol (Oxf). 1994;41(3):365-370. doi: https://doi.org/10.1111/j.1365-2265.1994.tb02558.x

37. Benvenga S, Trimarchi F. Increasing frequency and clinical significance of thyroid hormone autoantibodies. Curr Opin Endocrinol Diabetes. 2004;11(4):209–213 doi: https://doi.org/10.1097/01.med.0000137759.57791.f8

38. John R, Henley R, Shankland D. Concentrations of free thyroxin and free triiodothyronine in serum of patients with thyroxin- and triiodothyronine-binding autoantibodies. Clin Chem. 1990;36(3):470-473. doi: https://doi.org/10.1093/clinchem/36.3.470

39. Srichomkwun P, Scherberg NH, Jakšić J, et al. Diagnostic dilemma in discordant thyroid function tests due to thyroid hormone autoantibodies. AACE Clin Case Rep. 2017;3(1):e22–e25 doi: https://doi.org/10.4158/EP151142.CR

40. Sapin R, Gasser F, Chambron J. Different sensitivity to anti-triiodothyronine autoantibodies of two direct radioimmunoassays of free triiodothyronine. Clin Chem. 1990;36(12):2141-2142. doi: https://doi.org/10.1093/clinchem/36.12.2141

41. Zouwail SA, O’Toole AM, Clark PM, et al. Influence of thyroid hormone autoantibodies on 7 thyroid hormone assays. Clin Chem. 2008;54(5):927-928. doi: https://doi.org/10.1373/clinchem.2007.099770

42. Levinson SS, Miller JJ. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin Chim Acta. 2002;325(1-2):1-15. doi: https://doi.org/10.1016/s0009-8981(02)00275-9

43. Ismail AA, Walker PL, Cawood ML, et al. Interference in immunoassay is an underestimated problem. Ann Clin Biochem. 2002;39(4):366-373. doi: https://doi.org/10.1258/000456302760042128

44. Ismail AAA, Walker PL, Barth JH, et al. Wrong Biochemistry Results: Two Case Reports and Observational Study in 5310 Patients on Potentially Misleading Thyroid-stimulating Hormone and Gonadotropin Immunoassay Results. Clin Chem. 2002;48(11):2023-2029. doi: https://doi.org/10.1093/clinchem/48.11.2023

45. Serei VD, Marshall I, Carayannopoulos MO. Heterophile antibody interference affecting multiple Roche immunoassays: A case study. Clinica Chimica Acta; International 2019;497:125-129. doi: https://doi.org/10.1016/j.cca.2019.07.010.

46. Schaison G, Thomopoulos P, Moulias R, Feinstein MC. False hyperthyrotropinemia induced by heterophilic antibodies against rabbit serum. J Clin Endocrinol Metab. 1981;53(1):200–202 doi: https://doi.org/10.1210/jcem-53-1-200

47. Czernichow P, Vandalem JL, Hennen G. Transient neonatal hyperthyrotropinemia: a factitious syndrome due to the presence of heterophilic antibodies in the plasma of infants and their mothers. J Clin Endocrinol Metab. 1981;53(2):387-393. doi: https://doi.org/10.1210/jcem-53-2-387


Supplementary files

1. Figure 1. Methods of immunoassays
Subject
Type Исследовательские инструменты
View (362KB)    
Indexing metadata ▾

Review

For citations:


Kim E.I., Dimitrova D.А., Dimitrova D.A., Katamadze N.N., Dzantieva T.S. Endogenous and exogenous interferences in thyroid function immunoassays. Clinical and experimental thyroidology. 2020;16(3):16-24. (In Russ.) https://doi.org/10.14341/ket12698

Views: 1499


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)