Application of artificial intelligence in ultrasound diagnostics of thyroid nodules
https://doi.org/10.14341/ket12782
Abstract
BACKGROUND: the use of artificial intelligence in ultrasound diagnosis of thyroid nodules is expected and quite promising. However, in order to understand this, it is necessary to see how a doctor works with its help, diagnosing diseases step by step, and how exactly this intelligence is implemented in practical healthcare. The current publication provides an overview of existing intelligent systems for supporting medical decisions in thyroidology, and describes in detail the capabilities of the Russian intelligent computer assistant for ultrasound diagnostics - a system for stratifying thyroid nodules by EU-TIRADS categories.
AIM: increasing the accuracy and reducing the time of ultrasound diagnostics in the study of thyroid nodules through the use of an intelligent system for assisting the ultrasound doctor at various stages of his activity with demonstration of the actions of the “assistant”.
MATERIALS AND METHODS: to understand the possibilities of ultrasound doctors using artificial intelligence in their work, the proposed solution is divided into stages, each of which demonstrates the additional capabilities that a doctor has when using intelligent computer vision methods. Various artificial neural network architectures are used as an intellectual base, which can be further trained like a human on new medical data.
RESULTS: the proposed intelligent solution allows the ultrasound doctor to have a “second opinion” at his workplace, which, by processing ultrasound cine loops, allows him to solve the problems of segmentation and stratification of thyroid nodules according to EU-TIRADS categories with an accuracy of 70%, i.e. at the level of a doctor with 5 years of experience. The proposed data driven approach will improve its accuracy as new patient loops are processed.
CONCLUSION: the narrative leads the reader to understand in what diagnostic processes it is useful to use artificial intelligence methods in the ultrasound diagnosis of thyroid nodules, and how natural and artificial intelligence can effectively interact within the framework of a software web application.
About the Authors
E. A. TroshinaRussian Federation
Ekaterina A. Troshina - MD, PhD, Professor.
Moscow
Competing Interests:
None
S. M. Zakharova
Russian Federation
Svetlana M. Zakharova - MD, PhD.
Moscow
Competing Interests:
None
K. V. Tsyguleva
Russian Federation
Kseniya V. Tsyguleva.
Moscow
Competing Interests:
None
I. A. Lozhkin
Russian Federation
Ilya A. Lozhkin.
Moscow
Competing Interests:
None
D. V. Korolev
Russian Federation
Denis V. Korolev.
Moscow
Competing Interests:
None
A. A. Trukhin
Russian Federation
Alexey A. Trukhin – PhD.
11 bld 2, Dm. Ulyanova street, 117292 Moscow
Competing Interests:
None
K. S. Zaytsev
Russian Federation
Konstantin S. Zajtsev – PhD.
Moscow
Competing Interests:
None
T. V. Soldatova
Russian Federation
Tatyana V. Soldatova - MD, PhD.
Moscow
Competing Interests:
None
A. A. Garmash
Russian Federation
Alexandr A. Garmash – PhD.
Moscow
Competing Interests:
None
References
1. Mathur P, Mishra S, Awasthi R, Khanna A, Maheshwari K, et al. Artificial Intelligence in Healthcare: 2021 Year in Review. doi: https://doi.org/10.13140/RG.2.2.25350.24645/1
2. Słowińska-Klencka D, Popowicz B, Klencki M. Real-Time Ultrasonography and the Evaluation of Static Images Yield Different Results in the Assessment of EU-TIRADS Categories. J Clin Med. 2023;12(18):5809. doi: https://doi.org/10.3390/jcm12185809
3. Peng S, Liu Y, Lv W, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Heal. 2021. doi: https://doi.org/10.1016/S2589-7500(21)00041-8
4. Ha EJ, Lee JH, Lee DH, et al. Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: A Multicenter Diagnostic Study. J Clin Endocrinol Metab. 2024;109(2):527-535. doi: https://doi.org/10.1210/clinem/dgad503
5. Трухин А.А., Захарова С.М., Дунаев М.Е., Исаева М.П., Гармаш А.А., Трошина Е.А. Роль искусственного интеллекта в дифференциальной ультразвуковой диагностике узловых образований щитовидной железы. Клиническая и экспериментальная тиреоидология. — 2022. — Т.18. — №2. С. 32-38. https://doi.org/10.14341/ket12730
6. Фартушный Э.Н., Сыч Ю.П., Фартушный И.Э., Кошечкин К.А., Лебедев Г.С. Стратификация узловых образований щитовидной железы по категориям Eu-TIRADS с использованием трансферного обучения свёрточных нейронных сетей // Клиническая и экспериментальная тиреоидология. — 2022. — Т.18. — №2. https://doi.org/10.14341/ket12724.
7. Manaev AV, Trukhin AA, Zakharova SM, Troshina EA, Mokrysheva NG, Garmash AA. Textural Statistical Features of Ultrasound Imaging of Thyroid Nodules in the Assessment of Malignancy Status. Phys At Nucl. 2023;86(11):2500-2506. doi: https://doi.org/10.1134/S1063778823110297
8. Цыгулева К.В., Ложкин И.А., Королев Д.В., Зайцев К.С., Дунаев М.Е., Гармаш А.А., и др. Исследование применения нейросетевых моделей в классификации узлов щитовидной железы по категориям EU-TIRADS для персонализации ультразвуковой диагностики щитовидной железы // Клиническая и экспериментальная тиреоидология. — 2023. — Т. 19. — №1. doi: https://doi.org/10.14341/ket12757
9. Jhade S, Gangavarapu S, Channabasamma Rozhdestvenskiy O. Smart Medicine: Exploring the Landscape of AI-Enhanced Clinical Decision Support Systems. MATEC Web of Conferences. 2024:392. doi: https://doi.org/10.1051/matecconf/202439201083
10. Hong N, Park H, Rhee Y. Machine Learning Applications in Endocrinology and Metabolism Research: An Overview. Endocrinol Metab. 2020;35(1):71-84
11. Гусев А.В., Владзимирский А.В., Шарова Д.Е., Арзамасов К.М., Храмов А.Е. Развитие исследований и разработок в сфере технологий искусственного интеллекта для здравоохранения в Российской Федерации: итоги 2021 года. 2022. — Т. 3. doi: https://doi.org/10.17816/DD107367
12. Комарь П.А., Дмитриев В.С., Ледяева А.М., Шадеркин И.А., Зеленский М.М. Рейтинг стартапов искусственного интеллекта: перспективы для здравоохранения России. // Журнал телемедицины и электронного здравоохранения. — 2021 г. — Т. 3. URL: https://cyberleninka.ru/article/n/reyting-startapov-iskusstvennogo-intellekta-perspektivy-dlya-zdravoohraneniya-rossii
13. Afridi A, Khan S. Digital transformation in healthcare rehabilitation: a narrative review. 2024;12:16-30. doi: https://doi.org/10.5937/jpmnt12-48336
14. Grigorieva N, Demkina A, Korobeynikova A. Digitalization in the Russian healthcare: barriers to digital maturity. Population and Economics. 2024;8:1-14. doi: https://doi.org/10.3897/popecon.8.e111793
15. Toldo M, Maracani A, Michieli U, Zanuttigh P. Unsupervised Domain Adaptation in Semantic Segmentation: A Review. Technologies. 2020;8:35. doi: https://doi.org/10.3390/technologies8020035
16. База данных №2023624099. База размеченных данных для решения задач классификации EU-TIRADS, автоматических детекции (локализации) и сегментации узловых образований щитовидной железы, дата государственной регистрации 21.10.2023 г.
17. Программа для ЭВМ №2023685308. Интеллектуальный ассистент врача ультразвуковой диагностики узловых образований щитовидной железы, дата государственной регистрации 24.10.2023 г.
Supplementary files
|
1. Figure 1. Characteristics of the study results with the ThyNet system [2]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(349KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Study results characteristics [3]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(287KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Algorithm of ultrasonic diagnostics in the intelligent support system. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(233KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Authorization in the system. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(143KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Selecting a map from those entered in the system. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(76KB)
|
Indexing metadata ▾ |
|
6. Figure 6. Creating a new patient record. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(159KB)
|
Indexing metadata ▾ |
|
7. Figure 7. Selecting an image from the ultrasound machine. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(205KB)
|
Indexing metadata ▾ |
|
8. Figure 8. Main page (snapshot loading page) in the system. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(122KB)
|
Indexing metadata ▾ |
|
9. Figure 9. Example of calling an interactive instruction. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(145KB)
|
Indexing metadata ▾ |
|
10. Figure 10. Filling in the fields “Device”, “Projection type”, “Patient”. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
|
11. Figure 11. Interface for selecting a thyroid ultrasound image file. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(167KB)
|
Indexing metadata ▾ |
|
12. Figure 12. Shape of echographic features. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(187KB)
|
Indexing metadata ▾ |
|
13. Figure 13. Starting the forecasting process. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(39KB)
|
Indexing metadata ▾ |
|
14. Figure 14. Prediction result view page. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(191KB)
|
Indexing metadata ▾ |
|
15. Figure 15. Patient's record page. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(94KB)
|
Indexing metadata ▾ |
|
16. Figure 16. Variation of the highlighted borders of the nodal formation. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(296KB)
|
Indexing metadata ▾ |
|
17. Figure 17. Highlighting of a new neoplasm. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(219KB)
|
Indexing metadata ▾ |
|
18. Figure 18. Filling in the form for examination. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(258KB)
|
Indexing metadata ▾ |
|
19. Figure 19. Expert mail section (Expert's personal cabinet). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(88KB)
|
Indexing metadata ▾ |
|
20. Figure 20. Expert mail section (Personal cabinet of an ordinary user). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(192KB)
|
Indexing metadata ▾ |
Review
For citations:
Troshina E.A., Zakharova S.M., Tsyguleva K.V., Lozhkin I.A., Korolev D.V., Trukhin A.A., Zaytsev K.S., Soldatova T.V., Garmash A.A. Application of artificial intelligence in ultrasound diagnostics of thyroid nodules. Clinical and experimental thyroidology. 2024;20(1):15-29. (In Russ.) https://doi.org/10.14341/ket12782

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).