C-cells etiology and calcitonin/cgrp family of peptides. Literature review
https://doi.org/10.14341/ket12805
Abstract
Medullary thyroid cancer (MTC) is a rare form of cancer derived from parafollicular or C cells. Currently, there is an active search for predictors of the course of MTC and markers that can predict the treatment response. Understanding the biological characteristics of the tumor requires insights from both embryology and genetics. While the genetic aspects of MTC are relatively well-studied, the embryonic origin of C-cells remains a subject of ongoing investigation. The prevailing hypothesis suggests an ectodermal origin, yet recent studies have identified the expression of markers in C-cells that are typical of cells with endodermal lineage. These data deepen the understanding of their biological role and provide reasons for further research. C-cells produce several essential hormones, including calcitonin, and possess a unique ability to synthesize and secrete other peptide hormones. This article focuses on members of the calcitonin family of hormones — calcitonin gene-related peptide, amylin, adrenomedullin, and intermedin — which regulate critical physiological processes. Some of these hormones and their receptors have been identified in malignant tumors and are associated with poorer prognosis. This review analyzes current findings on the origins of C-cells and calcitonin precursors, along with structurally similar peptides, highlighting their importance in the context of clinical oncology.
About the Authors
A. ChevaisRussian Federation
Anastassia Chevais, MD, PhD
11 Dm. Ulyanova street, 117292, Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
E. V. Bondarenko
Russian Federation
Ekaterina V. Bondarenko, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
K. Yu. Slashchuk
Russian Federation
Konstantin Yu. Slashchuk, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
A. K. Ebzeeva
Russian Federation
Aminat K. Ebzeeva, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
K. D. Vikhireva
Russian Federation
Ksenya D. Vikhireva, student
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
D. G. Beltsevich
Russian Federation
Dmitry G. Beltsevich, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи
References
1. Baber EC. XXI. Contributions to the minute anatomy of the thyroid gland of the dog. Philosophical Transactions of the Royal Society of London. 1876;166:557-568. doi: https://doi.org/10.1098/rstl.1876.0021
2. Nonidez JF. The origin of the “parafollicular” cell, a second epithelial component of the thyroid gland of the dog. 1932;49(3):479-505. doi: https://doi.org/10.1002/aja.1000490307
3. Lychkova AE. Nervous regulation оf thyroid function. Annals of the Russian academy of medical sciences. 2013;68(6):49-55. (In Russ).. doi: https://doi.org/10.15690/vramn.v68i6.673
4. Pearse AG. 5-hydroxytryptophan uptake by dog thyroid ‘C’ cells, and its possible significance in polypeptide hormone production. Nature. 1966;211(5049):598-600. doi: https://doi.org/10.1038/211598a0
5. Nilsson M, Williams D. On the Origin of Cells and Derivation of Thyroid Cancer: C Cell Story Revisited. Eur Thyroid J. 2016;5(2):79-93. doi: https://doi.org/10.1159/00044733
6. Grevellec A, Tucker AS. The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin Cell Dev Biol. 2010;21(3):325-332. doi: https://doi.org/10.1016/j.semcdb.2010.01.022
7. Das SS, Mishra S, Kaul JM. Development of Parafollicular Cells and their Relationship with Developing Thyroid Follicles in Human Foetuses. J Clin Diagn Res. 2017;11(7):AC01-AC04. doi: https://doi.org/10.7860/JCDR/2017/26211.10225
8. Kameda Y. Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dyn. 2016;245(3):323-341. doi: https://doi.org/10.1002/dvdy.24377
9. Russo AF, Clark MS, Durham PL. Thyroid parafollicular cells. An accessible model for the study of serotonergic neurons. Mol Neurobiol. 1996;13(3):257-276. doi: https://doi.org/10.1007/BF02740626
10. Adams A, Mankad K, Offiah C, Childs L. Branchial cleft anomalies: a pictorial review of embryological development and spectrum of imaging findings. Insights Imaging. 2016;7(1):69-76. doi: https://doi.org/10.1007/s13244-015-0454-5
11. Pueblitz S, Weinberg AG, Albores-Saavedra J. Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol. 1993;13(4):463-473. doi: https://doi.org/10.3109/15513819309048236
12. De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev. 2004;25(5):722-746. doi: https://doi.org/10.1210/er.2003-0028
13. Damante G, Tell G, Di Lauro R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol. 2001;66:307-356. doi: https://doi.org/10.1016/s0079-6603(00)66033-6
14. Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19(1):87-90. doi: https://doi.org/10.1038/ng0598-87
15. Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn. 2003;227(3):367-378. doi: https://doi.org/10.1002/dvdy.10325
16. Kusakabe T, Hoshi N, Kimura S. Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn. 2006;235(5):1300-1309. doi: https://doi.org/10.1002/dvdy.20655
17. Johansson E, Andersson L, Örnros J, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519-3528. doi: https://doi.org/10.1242/dev.126581
18. Gimenez-Roqueplo AP, Robledo M, Dahia PLM. Update on the genetics of paragangliomas. Endocr Relat Cancer. 2023;30(4):e220373. doi: https://doi.org/10.1530/ERC-22-0373
19. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119(4):1005-1017. doi: https://doi.org/10.1242/dev.119.4.1005
20. Hibi Y, Ohye T, Ogawa K, et al. A MEN2A family with two asymptomatic carriers affected by unilateral renal agenesis. Endocr J. 2014;61(1):19-23. doi: https://doi.org/10.1507/endocrj.ej13-0335
21. Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev. 2023;44(5):779-818. doi: https://doi.org/10.1210/endrev/bnad009
22. Inzerillo AM, Zaidi M, Huang CL. Calcitonin: physiological actions and clinical applications. J Pediatr Endocrinol Metab. 2004;17(7):931-940. doi: https://doi.org/10.1515/jpem.2004.17.7.931
23. Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev. 1996;17(5):533-585. doi: https://doi.org/10.1210/edrv-17-5-533
24. Ali-Rachedi A, Varndell IM, Facer P, et al. Immunocytochemical localisation of katacalcin, a calcium-lowering hormone cleaved from the human calcitonin precursor. J Clin Endocrinol Metab. 1983;57(3):680-682. doi: https://doi.org/10.1210/jcem-57-3-680
25. Tamir H, Hsiung SC, Yu PY, et al. Serotonergic signalling between thyroid cells: protein kinase C and 5-HT2 receptors in the secretion and action of serotonin. Synapse. 1992;12(2):155-168. doi: https://doi.org/10.1002/syn.890120209
26. Raue F, Zink A, Scherübl H. Regulation of calcitonin secretion in vitro. Horm Metab Res. 1993;25(9):473-476. doi: https://doi.org/10.1055/s-2007-1002152
27. Zink A, Scherubl H, Raue F, Ziegler R. Somatostatin acts via a pertussis toxin-sensitive mechanism on calcitonin secretion in C-cells. Henry Ford Hosp Med J. 1992;40(3-4):289-292
28. Austin LA, Heath H 3rd. Calcitonin: physiology and pathophysiology. N Engl J Med. 1981;304(5):269-278. doi: https://doi.org/10.1056/NEJM198101293040505
29. Stevenson JC, Abeyasekera G, Hillyard CJ, et al. Calcitonin and the calcium-regulating hormones in postmenopausal women: effect of oestrogens. Lancet. 1981;1(8222):693-695. doi: https://doi.org/10.1016/s0140-6736(81)91973-5
30. Catherwood BD, Onishi T, Deftos LJ. Effect of estrogens and phosphorus depletion on plasma calcitonin in the rat. Calcif Tissue Int. 1983;35(4-5):502-507. doi: https://doi.org/10.1007/BF02405084
31. Zabel M. Parafollicular cells of the rat thyroid gland after treatment with vitamin D. Acta Anat (Basel). 1984;118(1):18-22. doi: https://doi.org/10.1159/000145816
32. Fernández-Santos JM, Utrilla JC, Conde E, Hevia A, Loda M, Martín-Lacave I. Decrease in calcitonin and parathyroid hormone mRNA levels and hormone secretion under long-term hypervitaminosis D3 in rats. Histol Histopathol. 2001;16(2):407-414. doi: https://doi.org/10.14670/HH-16.407
33. Deftos LJ, Weisman MH, Williams GW, et al. Influence of age and sex on plasma calcitonin in human beings. N Engl J Med. 1980;302(24):1351-1353. doi: https://doi.org/10.1056/NEJM198006123022407
34. Akhpolova VO, Brin VB. Calcium exchange and its hormonal regulation. Zurnal fundamental’noj mediciny i biologii. 2017;2:38–46. (In Russ).
35. Maleitzke T, Hildebrandt A, Dietrich T, et al. The calcitonin receptor protects against bone loss and excessive inflammation in collagen antibody-induced arthritis. iScience. 2021;25(1):103689. doi: https://doi.org/10.1016/j.isci.2021.103689
36. Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol. 2018;175(1):3-17. doi: https://doi.org/10.1111/bph.14075
37. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev. 2023;103(2):1565-1644. doi: https://doi.org/10.1152/physrev.00059.2021
38. Dubenko OYe. Calcitonin gene-related peptide in migraine: the pathogenetic factor and therapeutic target (review). International neurological journal. 2018;2 (96):38–44. In Russ). doi: https://doi.org/10.22141/2224-0713.2.96.2018.130481
39. Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone. J Musculoskelet Neuronal Interact. 2006;6(1):87-95
40. Pacini F, Fugazzola L, Basolo F, Elisei R, Pinchera A. Expression of calcitonin gene-related peptide in medullary thyroid cancer. J Endocrinol Invest. 1992;15(7):539-542. doi: https://doi.org/10.1007/BF03348802
41. Nakazawa T, Cameselle-Teijeiro J, Vinagre J, et al. C-cellderived calcitonin-free neuroendocrine carcinoma of the thyroid: the diagnostic importance of CGRP immunoreactivity. Int J Surg Pathol. 2014;22(6):530-535. doi: https://doi.org/10.1177/1066896914525228
42. Parmer M, Milan S, Torabi A. Calcitonin-Negative Neuroendocrine Tumor of the Thyroid. Int J Surg Pathol. 2017;25(2):191-194. doi: https://doi.org/10.1177/1066896916670989
43. Kasajima A, Cameselle-Teijeiro J, Loidi L, et al. A Calcitonin Non-producing Neuroendocrine Tumor of the Thyroid Gland. Endocr Pathol. 2016;27(4):325-331. doi: https://doi.org/10.1007/s12022-016-9416-9
44. Brutsaert EF, Gersten AJ, Tassler AB, Surks MI. Medullary thyroid cancer with undetectable serum calcitonin. J Clin Endocrinol Metab. 2015;100(2):337-341. doi: https://doi.org/10.1210/jc.2014-3095
45. Volkov VP. Novy`e pankreaticheskie gormony`: amilin (obzor literatury`). Universum: medicina i farmakologiya: e`lektron. nauchn. zhurn. 2014;11(12). In Russ.).
46. Alevizaki M, Grigorakis SI, Tseleni-Balafouta S, et al. High plasma amylin/islet amyloid polypeptide levels in patients with residual medullary thyroid carcinoma after total thyroidectomy. Eur J Endocrinol. 2001;145(5):585-589. doi: https://doi.org/10.1530/eje.0.1450585
47. Sugo S, Minamino N, Shoji H, et al. Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factoralpha. Biochem Biophys Res Commun. 1994;203(1):719-726. doi: https://doi.org/10.1006/bbrc.1994.2241
48. Kohno M, Hanehira T, Kano H, et al. Plasma adrenomedullin concentrations in essential hypertension. Hypertension. 1996;27(1):102-107. doi: https://doi.org/10.1161/01.hyp.27.1.102
49. Jougasaki M, Wei CM, McKinley LJ, Burnett JC Jr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation. 1995;92(3):286-289. doi: https://doi.org/10.1161/01.cir.92.3.286
50. Chen YX, Li CS. Prognostic value of adrenomedullin in septic patients in the ED. Am J Emerg Med. 2013;31(7):1017-1021. doi: https://doi.org/10.1016/j.ajem.2013.03.017
51. Jailani ABA, Bigos KJA, Avgoustou P, et al. Targeting the adrenomedullin-2 receptor for the discovery and development of novel anti-cancer agents. Expert Opin Drug Discov. 2022;17(8):839-848. doi: https://doi.org/10.1080/17460441.2022.2090541
52. Fischer JP, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin - Current perspective on a peptide hormone with significant therapeutic potential. Peptides. 2020;131:170347. doi: https://doi.org/10.1016/j.peptides.2020.170347
53. Yang Z, Li H, Wu P, et al. Multi-biological functions of intermedin in diseases. Front Physiol. 2023;14:1233073. doi: https://doi.org/10.3389/fphys.2023.1233073
54. García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers. 2016;4(4):e1228439. doi: https://doi.org/10.1080/21688370.2016.1228439
55. DHay DL, Walker CS, Poyner DR. Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges. Endocr Relat Cancer. 2010;18(1):C1-C14. doi: https://doi.org/10.1677/ERC-10-0244
56. Xiao F, Wang D, Kong L, et al. Intermedin protects against sepsis by concurrently re-establishing the endothelial barrier and alleviating inflammatory responses. Nat Commun. 2018;9(1):2644. doi: https://doi.org/10.1038/s41467-018-05062-2
57. Morimoto R, Satoh F, Murakami O, et al. Expression of adrenomedullin 2/intermedin in human adrenal tumors and attached non-neoplastic adrenal tissues. J Endocrinol. 2008;198(1):175-183. doi: https://doi.org/10.1677/JOE-08-0103
58. Guo X, Schmitz JC, Kenney BC, Uchio EM, Kulkarni S, Cha CH. Intermedin is overexpressed in hepatocellular carcinoma and regulates cell proliferation and survival. Cancer Sci. 2012;103(8):1474-1480. doi: https://doi.org/10.1111/j.1349-7006.2012.02341.x
59. Xiao F, Li H, Feng Z, et al. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/ DDIT3 signaling cascade. Sci Rep. 2021;11(1):488. doi: https://doi.org/10.1038/s41598-020-80066-x
60. Smith RS Jr, Gao L, Bledsoe G, Chao L, Chao J. Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol. 2009;297(3):H1040-H1047. doi: https://doi.org/10.1152/ajpheart.00404.2009
61. Cai Y, Xu MJ, Teng X, et al. Intermedin inhibits vascular calcification by increasing the level of matrix gammacarboxyglutamic acid protein. Cardiovasc Res. 2010;85(4):864-873. doi: https://doi.org/10.1093/cvr/cvp366
62. Lu YM, Zhong JB, Wang HY, Yu XF, Li ZQ. The prognostic value of intermedin in patients with breast cancer. Dis Markers. 2015;2015:862158. doi: https://doi.org/10.1155/2015/862158
63. Nagasaki S, Fukui M, Asano S, et al. Induction of adrenomedullin 2/ intermedin expression by thyroid stimulating hormone in thyroid. Mol Cell Endocrinol. 2014;395(1-2):32-40. doi: https://doi.org/10.1016/j.mce.2014.07.008
64. Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab. 2007;4(2):117-122
Supplementary files
|
1. Figure 1: Calcitonin biosynthesis and calcitonin gene-associated peptide on the matrix of the CALC I gene (adapted from Russel F et al. (2014)). The CALC I gene contains six exons: exons I-IV comprise the mRNA of the calcitonin precursor, preprocalcitonin, while preproCGRP is encoded by exons I-III and V-IV. Alternative splicing of CALC I mRNA is tissue-specific: calcitonin mRNA is produced mainly in thyroid C-cells, whereas CGRPα mRNA is produced in the nervous system. CGRPα — calcitonin gene-associated peptide; CT — calcitonin. Image created in Biorender.com software. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(669KB)
|
Indexing metadata ▾ |
|
2. Figure 2: Biosynthesis of calcitonin gene-associated peptide β (CGRPβ) on the CALC II gene matrix. CGRPβ — calcitonin gene-associated peptide; CT — calcitonin. Image created in Biorender.com software. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(563KB)
|
Indexing metadata ▾ |
|
3. Figure 3: Calcitonin family receptors, ligands and their affinity. Ligands (peptide hormones) are indicated by spheres (proximity to the receptor demonstrates their relative potency - the closer to the receptor binding site, the greater the affinity). ADM — adrenomedullin; AD1MR — adrenomedullin-1 receptor; AD1MR — adrenomedullin-2 (intermedin) receptor; AM — amylin; AM1R — amylin-1 receptor; AM2R — amylin-2 receptor; AM3R — amylin-3 receptor; CGRP — calcitonin gene-related peptide; CGRPR — calcitonin gene-related peptide receptor; CLR, — calcitonin receptor-like receptor; CT, — calcitonin; CTR — calcitonin receptor; Gα — alpha subunit of G-protein; RAMP1, 2, 3 — transmembrane proteins belonging to the RAMP family of type 1, 2, 3; RCP — receptor coupling protein. The image was created in Biorender.com software. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(966KB)
|
Indexing metadata ▾ |
Review
For citations:
Chevais A., Bondarenko E.V., Slashchuk K.Yu., Ebzeeva A.K., Vikhireva K.D., Beltsevich D.G. C-cells etiology and calcitonin/cgrp family of peptides. Literature review. Clinical and experimental thyroidology. 2024;20(3):4-13. (In Russ.) https://doi.org/10.14341/ket12805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).