Preview

Clinical and experimental thyroidology

Advanced search

SPECT/CT textural features applicability in differentiated thyroid cancer response assessment after radioiodine therapy

https://doi.org/10.14341/ket12828

Abstract

BACKGROUNDDespite the significant advancement of medical image analysis methods, including radiomics technologies, their routine integration into clinical practice remains limited. One promising direction is the use of textural features derived from hybrid imaging modalities, such as single-photon emission computed tomography combined with computed tomography (SPECT/CT). These features reflect the spatial characteristics of radiopharmaceutical distribution and can potentially be used to predict treatment response.

OBJECTIVE: Assess the prognostic value of textural features extracted from post-therapeutic SPECT/CT images in evaluating the response to radioiodine therapy (RIT) in patients with differentiated thyroid cancer (DTC).

MATERIALS AND METHODSThe study included 53 patients with DTC who underwent post-therapeutic SPECT/CT imaging 72 hours after administration of sodium iodine I-131. A total of 88 accumulation areas in the residual thyroid gland (thyroid gland) tissue and 61 metastatic foci of prostate cancer were analyzed. Disease status (remission or recurrence) was assessed six months after RIT based on clinical, laboratory, and imaging criteria. Logistic regression models and receiver operating characteristic (ROC) analysis were used to evaluate the predictive value of the extracted textural features. Feature selection was performed using mRmR, Lasso, and conventional statistical criteria.

RESULTSDiagnostic models based on textural features were developed and tested separately for residual thyroid tissue and metastatic DTC lesions. The model based on features from metastatic lesions demonstrated high predictive performance (AUC = 0.88), while the model based on residual thyroid tissue showed moderate prognostic value (AUC=0.61).

CONCLUSIONThis study demonstrates the feasibility of using radiomics based on SPECT/CT-derived I-131 uptake textural features to predict outcomes of radioiodine therapy in DTC. The application of these features may enhance the accuracy of recurrence risk stratification and contribute to more personalized treatment strategies

About the Authors

M. S. Maltsev
National Research Nuclear Institute «MEPhI»; Moscow Multidisciplinary Clinical Center «Kommunarka»
Russian Federation

Mikhail S. Maltsev

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



M. V. Reinberg
Endocrinology Research Centre
Russian Federation

Marie V. Reinberg,  MD

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. A. Trukhin
National Research Nuclear Institute «MEPhI»; Endocrinology Research Centre
Russian Federation

Alexey A. Trukhin, PhD

Moscow, 11, Dm. Ulyanov St., 11,  117292


Competing Interests:

 

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



S. I. Alieva
Endocrinology Research Centre
Russian Federation

Sema I. Alieva, resident

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. V. Manaev
National Research Nuclear Institute «MEPhI»; Endocrinology Research Centre
Russian Federation

Almaz V. Manaev

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



S. S. Serzhenko
Endocrinology Research Centre
Russian Federation

Sergey S. Serzhenko, MD

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



K. Yu. Slashchuk
Endocrinology Research Centre
Russian Federation

Konstantin Yu. Slashchuk, MD, PhD

 Moscow


Competing Interests:

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



References

1. Trukhin A.A. Metody i sredstva povysheniya effektivnosti lechebno-diagnosticheskih processov v apparatno-programmnom komplekse radiojodterapii tireotoksikoza cheloveka: Dis. … kand. tekh. nauk. — Moskva, 2022.

2. Vučenović VT, Rajkovača Z, Jelić D., Stanimirović D., Vuleta G., Miljković B., Vučićević K. Investigation of factors influencing radioiodine 131I biokinetics in patients with benign thyroid disease using nonlinear mixed effects approach 129 V. European journal of clinical pharmacology. 2018;74(8):1037– 1045.

3. Pecora А. Texture analysis in metastases of patients affected by metastatic differentiated thyroid carcinoma treated with 131I. 2019

4. Vallières M, Kay-Rivest E, Perrin LJ, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017. doi: https://doi.org/10.1038/s41598-017-10371-5

5. Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020;30(11):6241-6250. doi: https://doi.org/10.1007/s00330-020-06957-9

6. Huang EP, O’Connor JPB, McShane LM, Giger ML, Lambin P, et al. Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol. 2023;20(2):69-82. doi: https://doi.org/10.1038/s41571-022-00707-0

7. Zwanenburg A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328-338. doi: https://doi.org/10.1148/radiol.2020191145

8. Dewaraja Y, Sjögreen-gleisner K. Dosimetry for Radiopharmaceutical Therapy, Non-serial Publications , IAEA, Vienna 2024. doi:https://doi.org/10.61092/iaea.xlzb-6h67

9. Durante C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy, 2006, doi: https://doi.org/10.1210/jc.2005-2838

10. Wang R, et al. Analysis of radioiodine therapy and prognostic factors for pulmonary metastases from papillary thyroid carcinoma, 2017, doi: https://doi.org/10.3892/ol.2017.6196

11. Giovanella L, et al. Radioiodine therapy of advanced differentiated thyroid cancer: clinical considerations and multidisciplinary approach, 2020, doi: https://doi.org/10.1007/s12020-020-02254-w

12. Zhao H, et al. Prognostic Factors for Survival in Patients With Pulmonary Metastases From Differentiated Thyroid Cancer: A Systematic Review and Meta-Analysis, 2020. doi: https://doi.org/10.3389/fonc.2022.990154

13. Rothenberg SM, et al. Redifferentiation of iodine-refractory BRAF V600E–mutant metastatic papillary thyroid cancer with dabrafenib, 2015, doi: https://doi.org/10.1158/1078-0432.CCR-14-2915

14. Weber M, et al. Enhancing radioiodine incorporation into radioiodine-refractory thyroid cancer with MAPK inhibition (ERRITI): A single-center prospective two-arm study, 2020. doi: https://doi.org/10.1158/1078-0432.CCR-22-0437

15. Zwanenburg A. et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, 2020. doi: https://doi.org/10.1158/1078-0432.CCR-22-0437

16. Patent № 2743275 Rossijskaya Federaciya, MPK A61V 5/00 (2006.01). Sposob ocenki riska recidiva differencirovannogo raka shchitovidnoj zhelezy posle provedeniya radiojodterapii: №2020128431: opublikovano 16.02.2021 / Bubnov A.A., Truhin A.A., Rumyancev P.O., Degtyarev M.V., Serzhenko S.S., Slashchuk K.YU., Kolpakova E.A., Dedov I.I., Mokrysheva N.G., Mel’nichenko G.A.]


Supplementary files

1. Figure 1. SPECT/CT slice of the original distribution (A) and mask (B).
Subject
Type Исследовательские инструменты
View (154KB)    
Indexing metadata ▾
2. Figure 2. Localized cubic volume of the region of interest, the center of which coincides with the maximum intensity value in the mask.
Subject
Type Исследовательские инструменты
View (244KB)    
Indexing metadata ▾
3. Figure 3. An example of constructing a gray-level co-occurrence matrices (GLCM) based on the original two-dimensional distribution, with voxels adjacent at an angle of 45 degrees.
Subject
Type Исследовательские инструменты
View (289KB)    
Indexing metadata ▾
4. Figure 4. Algorithm for feature selection using statistical criteria
Subject
Type Исследовательские инструменты
View (314KB)    
Indexing metadata ▾
5. Figure 5. ROC curves of diagnostic models for residual thyroid tissue.
Subject
Type Исследовательские инструменты
View (240KB)    
Indexing metadata ▾
6. Figure 6. ROC curves of diagnostic models for metastatic tissue.
Subject
Type Исследовательские инструменты
View (249KB)    
Indexing metadata ▾

Review

For citations:


Maltsev M.S., Reinberg M.V., Trukhin A.A., Alieva S.I., Manaev A.V., Serzhenko S.S., Slashchuk K.Yu. SPECT/CT textural features applicability in differentiated thyroid cancer response assessment after radioiodine therapy. Clinical and experimental thyroidology. 2025;21(1):4-14. (In Russ.) https://doi.org/10.14341/ket12828

Views: 239


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)