SPECT/CT textural features applicability in differentiated thyroid cancer response assessment after radioiodine therapy
https://doi.org/10.14341/ket12828
Abstract
BACKGROUND: Despite the significant advancement of medical image analysis methods, including radiomics technologies, their routine integration into clinical practice remains limited. One promising direction is the use of textural features derived from hybrid imaging modalities, such as single-photon emission computed tomography combined with computed tomography (SPECT/CT). These features reflect the spatial characteristics of radiopharmaceutical distribution and can potentially be used to predict treatment response.
OBJECTIVE: Assess the prognostic value of textural features extracted from post-therapeutic SPECT/CT images in evaluating the response to radioiodine therapy (RIT) in patients with differentiated thyroid cancer (DTC).
MATERIALS AND METHODS: The study included 53 patients with DTC who underwent post-therapeutic SPECT/CT imaging 72 hours after administration of sodium iodine I-131. A total of 88 accumulation areas in the residual thyroid gland (thyroid gland) tissue and 61 metastatic foci of prostate cancer were analyzed. Disease status (remission or recurrence) was assessed six months after RIT based on clinical, laboratory, and imaging criteria. Logistic regression models and receiver operating characteristic (ROC) analysis were used to evaluate the predictive value of the extracted textural features. Feature selection was performed using mRmR, Lasso, and conventional statistical criteria.
RESULTS: Diagnostic models based on textural features were developed and tested separately for residual thyroid tissue and metastatic DTC lesions. The model based on features from metastatic lesions demonstrated high predictive performance (AUC = 0.88), while the model based on residual thyroid tissue showed moderate prognostic value (AUC=0.61).
CONCLUSION: This study demonstrates the feasibility of using radiomics based on SPECT/CT-derived I-131 uptake textural features to predict outcomes of radioiodine therapy in DTC. The application of these features may enhance the accuracy of recurrence risk stratification and contribute to more personalized treatment strategies
About the Authors
M. S. MaltsevRussian Federation
Mikhail S. Maltsev
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
M. V. Reinberg
Russian Federation
Marie V. Reinberg, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
A. A. Trukhin
Russian Federation
Alexey A. Trukhin, PhD
Moscow, 11, Dm. Ulyanov St., 11, 117292
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
S. I. Alieva
Russian Federation
Sema I. Alieva, resident
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
A. V. Manaev
Russian Federation
Almaz V. Manaev
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
S. S. Serzhenko
Russian Federation
Sergey S. Serzhenko, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
K. Yu. Slashchuk
Russian Federation
Konstantin Yu. Slashchuk, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
References
1. Trukhin A.A. Metody i sredstva povysheniya effektivnosti lechebno-diagnosticheskih processov v apparatno-programmnom komplekse radiojodterapii tireotoksikoza cheloveka: Dis. … kand. tekh. nauk. — Moskva, 2022.
2. Vučenović VT, Rajkovača Z, Jelić D., Stanimirović D., Vuleta G., Miljković B., Vučićević K. Investigation of factors influencing radioiodine 131I biokinetics in patients with benign thyroid disease using nonlinear mixed effects approach 129 V. European journal of clinical pharmacology. 2018;74(8):1037– 1045.
3. Pecora А. Texture analysis in metastases of patients affected by metastatic differentiated thyroid carcinoma treated with 131I. 2019
4. Vallières M, Kay-Rivest E, Perrin LJ, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017. doi: https://doi.org/10.1038/s41598-017-10371-5
5. Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020;30(11):6241-6250. doi: https://doi.org/10.1007/s00330-020-06957-9
6. Huang EP, O’Connor JPB, McShane LM, Giger ML, Lambin P, et al. Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol. 2023;20(2):69-82. doi: https://doi.org/10.1038/s41571-022-00707-0
7. Zwanenburg A, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328-338. doi: https://doi.org/10.1148/radiol.2020191145
8. Dewaraja Y, Sjögreen-gleisner K. Dosimetry for Radiopharmaceutical Therapy, Non-serial Publications , IAEA, Vienna 2024. doi:https://doi.org/10.61092/iaea.xlzb-6h67
9. Durante C. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy, 2006, doi: https://doi.org/10.1210/jc.2005-2838
10. Wang R, et al. Analysis of radioiodine therapy and prognostic factors for pulmonary metastases from papillary thyroid carcinoma, 2017, doi: https://doi.org/10.3892/ol.2017.6196
11. Giovanella L, et al. Radioiodine therapy of advanced differentiated thyroid cancer: clinical considerations and multidisciplinary approach, 2020, doi: https://doi.org/10.1007/s12020-020-02254-w
12. Zhao H, et al. Prognostic Factors for Survival in Patients With Pulmonary Metastases From Differentiated Thyroid Cancer: A Systematic Review and Meta-Analysis, 2020. doi: https://doi.org/10.3389/fonc.2022.990154
13. Rothenberg SM, et al. Redifferentiation of iodine-refractory BRAF V600E–mutant metastatic papillary thyroid cancer with dabrafenib, 2015, doi: https://doi.org/10.1158/1078-0432.CCR-14-2915
14. Weber M, et al. Enhancing radioiodine incorporation into radioiodine-refractory thyroid cancer with MAPK inhibition (ERRITI): A single-center prospective two-arm study, 2020. doi: https://doi.org/10.1158/1078-0432.CCR-22-0437
15. Zwanenburg A. et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, 2020. doi: https://doi.org/10.1158/1078-0432.CCR-22-0437
16. Patent № 2743275 Rossijskaya Federaciya, MPK A61V 5/00 (2006.01). Sposob ocenki riska recidiva differencirovannogo raka shchitovidnoj zhelezy posle provedeniya radiojodterapii: №2020128431: opublikovano 16.02.2021 / Bubnov A.A., Truhin A.A., Rumyancev P.O., Degtyarev M.V., Serzhenko S.S., Slashchuk K.YU., Kolpakova E.A., Dedov I.I., Mokrysheva N.G., Mel’nichenko G.A.]
Supplementary files
|
1. Figure 1. SPECT/CT slice of the original distribution (A) and mask (B). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(154KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Localized cubic volume of the region of interest, the center of which coincides with the maximum intensity value in the mask. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(244KB)
|
Indexing metadata ▾ |
|
3. Figure 3. An example of constructing a gray-level co-occurrence matrices (GLCM) based on the original two-dimensional distribution, with voxels adjacent at an angle of 45 degrees. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(289KB)
|
Indexing metadata ▾ |
|
4. Figure 4. Algorithm for feature selection using statistical criteria | |
Subject | ||
Type | Исследовательские инструменты | |
View
(314KB)
|
Indexing metadata ▾ |
|
5. Figure 5. ROC curves of diagnostic models for residual thyroid tissue. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(240KB)
|
Indexing metadata ▾ |
|
6. Figure 6. ROC curves of diagnostic models for metastatic tissue. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(249KB)
|
Indexing metadata ▾ |
Review
For citations:
Maltsev M.S., Reinberg M.V., Trukhin A.A., Alieva S.I., Manaev A.V., Serzhenko S.S., Slashchuk K.Yu. SPECT/CT textural features applicability in differentiated thyroid cancer response assessment after radioiodine therapy. Clinical and experimental thyroidology. 2025;21(1):4-14. (In Russ.) https://doi.org/10.14341/ket12828

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).