Genetic diagnosis of hereditary and sporadic forms of medullary thyroid cancer: clinical importance and perspectives
https://doi.org/10.14341/ket12832
Abstract
Medullary thyroid cancer is a rare neuroendocrine tumor that originates from parafollicular C-cells. The etiology of the disease can be either sporadic or hereditary, and it is associated with multiple endocrine neoplasia syndromes types 2A and 2B. Genetic analysis of sporadic MTC reveals significant variation when compared to hereditary forms of the disease. This review paper summarizes current data on the frequency and prognostic significance of RET and RAS mutations, providing information on the molecular genetic characterization of MTC and the possibilities of personalized therapy with tyrosine kinase inhibitors. An examination of the approaches to molecular diagnostics is undertaken, with particular emphasis on their clinical significance in verifying diagnoses, assessing the risk of relapse, and selecting therapy. A thorough analysis of recent data on the frequency of somatic mutations in sporadic forms of breast cancer, their mutual exclusivity, and their relationship to the biological behavior of the tumor is presented herein.
About the Authors
A. ChevaisRussian Federation
Anastassia Chevais, MD, PhD
11 Dm. Ulyanova street, 117292, Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
K. Sh. Gadzhieva
Russian Federation
Kamila Sh. Gadzhieva
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
K. Yu. Slashchuk
Russian Federation
Konstantin Yu. Slashchuk, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
E. V. Bondarenko
Russian Federation
Ekaterina V. Bondarenko, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
A. K. Ebzeeva
Russian Federation
Aminat K. Ebzeeva, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
D. G. Beltsevich
Russian Federation
Dmitry G. Beltsevich, MD, PhD, professor
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием
настоящей статьи.
References
1. Kim M, Kim BH. Current Guidelines for Management of Medullary Thyroid Carcinoma. Endocrinol Metab (Seoul). 2021;36(3):514-524. doi: https://doi.org/10.3803/ENM.2021.1082
2. Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567-610. doi: https://doi.org/10.1089/thy.2014.0335
3. Kloos RT, Eng C, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association [published correction appears in Thyroid. 2009 Nov;19(11):1295]. Thyroid. 2009;19(6):565-612. doi: https://doi.org/10.1089/thy.2008.0403
4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: https://doi.org/10.3322/CAAC.21551
5. Caillé S, Debreuve-Theresette A, Vitellius G, et al. Medullary Thyroid Cancer: Epidemiology and Characteristics According to Data From the Marne-Ardennes Register 1975-2018. J Endocr Soc. 2024;8(6). doi: https://doi.org/10.1210/JENDSO/BVAE084
6. Netea-Maier RT, Aben KKH, Casparie MK, et al. Trends in incidence and mortality of thyroid carcinoma in The Netherlands between 1989 and 2003: Correlation with thyroid fine-needle aspiration cytology and thyroid surgery. Int J Cancer. 2008;123(7):1681-1684. doi: https://doi.org/10.1002/IJC.23678
7. Kebebew E, Ituarte PH, Siperstein AE, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88(5):1139-1148. doi: https://doi.org/10.1002/(sici)1097-0142(20000301)88:5<1139::aid-cncr26>3.0.co;2-z
8. Polyakov AP, Pol’kin VV, Agababyan TA, i dr. Differencirovannyj rak shchitovidnoj zhelezy. Klinicheskie rekomendacii. 2024 (In Russ)
9. d’Herbomez M, Caron P, Bauters C, et al. Reference range of serum calcitonin levels in humans: Influence of calcitonin assays, sex, age, and cigarette smoking. Eur J Endocrinol. 2007;157(6):749-755. doi: https://doi.org/10.1530/EJE-07-0566
10. Elisei R, Tacito A, Ramone T, et al. Twenty-five years experience on RET genetic screening on hereditary MTC: An update on the prevalence of germline RET mutations. Genes (Basel). 2019;10(9). doi: https://doi.org/10.3390/GENES10090698
11. Znaczko A, Donnelly DE, Morrison PJ. Epidemiology, Clinical Features, and Genetics of Multiple Endocrine Neoplasia Type 2B in a Complete Population. Oncologist. 2014;19(12):1284-1286. doi: https://doi.org/10.1634/THEONCOLOGIST.2014-0277
12. Mathiesen JS, Kroustrup JP, Vestergaard P, et al. Survival and Long-Term Biochemical Cure in Medullary Thyroid Carcinoma in Denmark 1997-2014: A Nationwide Study. Thyroid. 2019;29(3):368-377. doi: https://doi.org/10.1089/THY.2018.0564
13. An Y, Lu J, Hu M, Cao Q. A prediction model for the 5-year, 10-year and 20-year mortality of medullary thyroid carcinoma patients based on lymph node ratio and other predictors. Front Surg. 2023;9. doi: https://doi.org/10.3389/FSURG.2022.1044971/FULL
14. Romei C, Ugolini C, Cosci B, et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid. 2012;22(5):476-481. doi: https://doi.org/10.1089/THY.2011.0358
15. Raue F, Frank-Raue K. Epidemiology and clinical presentation of medullary thyroid carcinoma. Recent Results Cancer Res. 2015;204:61-90. doi: https://doi.org/10.1007/978-3-319-22542-5_3
16. Mathew CGP, Chin KS, Easton DF, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature. 1987;328(6130):527-528. doi: https://doi.org/10.1038/328527A0,
17. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581-588. doi: https://doi.org/10.1016/0092-8674(85)90115-1
18. Donis-keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN 2a and FMTC. Hum Mol Genet. 1993;2(7):851-856. doi: https://doi.org/10.1093/HMG/2.7.851
19. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16(4-5):441-467. doi: https://doi.org/10.1016/j.cytogfr.2005.05.010
20. Okafor C, Hogan J, Raygada M, et al. Update on Targeted Therapy in Medullary Thyroid Cancer. Front Endocrinol (Lausanne). 2021;12. doi: https://doi.org/10.3389/FENDO.2021.708949
21. Arlt DH, Baur B, Wagner B, Höppner W. A novel type of mutation in the cysteine rich domain of the RET receptor causes ligand independent activation. Oncogene. 2000;19(30):3445-3448. doi: https://doi.org/10.1038/SJ.ONC.1203688
22. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 2017;317(13):1338-1348. doi: https://doi.org/10.1001/JAMA.2017.2719
23. Wolfe HJ, Melvin KEW, Cervi-Skinner SJ, et al. C-Cell Hyperplasia Preceding Medullary Thyroid Carcinoma. N Engl J Med. 1973;289(9):437-441. doi: https://doi.org/10.1056/NEJM197308302890901
24. Margraf RL, Crockett DK, Krautscheid PMF, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: Repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548-556. doi: https://doi.org/10.1002/HUMU.20928
25. Tessitore A, Sinisi AA, Pasquali D, et al. A novel case of multiple endocrine neoplasia type 2A associated with two de novo mutations of the RET protooncogene. J Clin Endocrinol Metab. 1999;84(10):3522-3527. doi: https://doi.org/10.1210/JCEM.84.10.6056
26. Moers AMJ, Landsvater RM, Schaap C, et al. Familial medullary thyroid carcinoma: Not a distinct entity? Genotype-phenotype correlation in a large family. Am J Med. 1996;101(6):635-641. doi: https://doi.org/10.1016/S0002-9343(96)00330-0
27. Carlson KM, Dou S, Chi D, et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci U S A. 1994;91(4):1579-1583. doi: https://doi.org/10.1073/PNAS.91.4.1579
28. Znaczko A, Donnelly DE, Morrison PJ. Epidemiology, Clinical Features, and Genetics of Multiple Endocrine Neoplasia Type 2B in a Complete Population. Oncologist. 2014;19(12):1284-1286. doi: https://doi.org/10.1634/THEONCOLOGIST.2014-0277
29. Jimenez C, Habra MA, Huang SCE, et al. Pheochromocytoma and medullary thyroid carcinoma: A new genotype-phenotype correlation of the RET protooncogene 891 germline mutation. J Clin Endocrinol Metab. 2004;89(8):4142-4145. doi: https://doi.org/10.1210/JC.2004-0041
30. Pigny P, Bauters C, Wemeau JL, et al. A novel 9-base pair duplication in RET exon 8 in familial medullary thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(5):1700-1704. doi: https://doi.org/10.1210/JCEM.84.5.5665
31. Álvares Da Silva AM, Maciel RMB, et al. A Novel Germ-Line Point Mutation in RET Exon 8 (Gly533Cys) in a Large Kindred with Familial Medullary Thyroid Carcinoma. J Clin Endocrinol Metab. 2003;88(11):5438-5443. doi: https://doi.org/10.1210/JC.2003-030997
32. Borrego S, Eng C, Sánchez B, et al. Molecular analysis of the ret and GDNF genes in a family with multiple endocrine neoplasia type 2A and Hirschsprung disease. J Clin Endocrinol Metab. 1998;83(9):3361-3364. doi: https://doi.org/10.1210/JCEM.83.9.5093
33. Dvorakova S, Vaclavikova E, Sykorova V, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol. 2008;284(1-2):21-27. doi: https://doi.org/10.1016/j.mce.2007.12.016
34. Shirali AS, Hu MI, Chiang YJ, et al. Next-Generation Sequencing in Sporadic Medullary Thyroid Cancer Patients: Mutation Profile and Disease Aggressiveness. J Endocr Soc. 2024;8(6):bvae048. doi: https://doi.org/10.1210/JENDSO/BVAE048
35. Ciampi R, Mian C, Fugazzola L, et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid. 2013;23(1):50-57. doi: https://doi.org/10.1089/thy.2012.0207
36. Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol. 2018;29(4):324-331. doi: https://doi.org/10.1007/S12022-018-9543-6/METRICS
37. Romei C, Ugolini C, Cosci B, et al. Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid. 2012;22(5):476-481. doi: https://doi.org/10.1089/THY.2011.0358
38. Ciampi R, Romei C, Ramone T, et al. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing. iScience. 2019;20:324-336. doi: https://doi.org/10.1016/j.isci.2019.09.030
39. Qu N, Shi X, Zhao JJ, Guan H, et al. Genomic and Transcriptomic Characterization of Sporadic Medullary Thyroid Carcinoma. Thyroid. 2020;30(7):1025-1036. doi: https://doi.org/10.1089/THY.2019.0531
40. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463-5467. doi: https://doi.org/10.1073/PNAS.74.12.5463
41. Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574-3579. doi: https://doi.org/10.1200/JCO.2011.35.9638
42. Montgomery J, Wittwer CT, Palais R, Zhou L. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc. 2007;2(1):59-66. doi: https://doi.org/10.1038/NPROT.2007.10
43. Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci Transl Med. 2011;3(111). doi: https://doi.org/10.1126/SCITRANSLMED.3003161
44. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57. doi: https://doi.org/10.1093/NAR/GNF056
45. Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016-1023. doi: https://doi.org/10.1097/00000478-200208000-00006
46. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi: https://doi.org/10.3322/CAAC.21660
47. Lairmore TC, Ball DW, Baylin SB, Wells SA. Management of pheochromocytomas in patients with multiple endocrine neoplasia type 2 syndromes. Ann Surg. 1993;217(6):595-603. doi: https://doi.org/10.1097/00000658-199306000-00001
48. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-1883. doi: https://doi.org/10.1093/annonc/mdz400
49. Capp C, Wajner SM, Siqueira DR, et al. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid. 2010;20(8):863-871. doi: https://doi.org/10.1089/THY.2009.0417
50. Wells SA, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134-141. doi: https://doi.org/10.1200/JCO.2011.35.5040
51. Schlumberger M, Elisei R, Müller S, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann Oncol. 2017;28(11):2813-2819. doi: https://doi.org/10.1093/annonc/mdx479
52. Ravaud A, de la Fouchardière C, Caron P, et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur J Cancer. 2017;76:110-117. doi: https://doi.org/10.1016/j.ejca.2017.01.029
53. Schlumberger M, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res. 2016;22(1):44-53. doi: https://doi.org/10.1158/1078-0432.CCR-15-1127
54. Tappenden P, Carroll C, Hamilton J, et al. Cabozantinib and vandetanib for unresectable locally advanced or metastatic medullary thyroid cancer: A systematic review and economic model. Health Technol Assess (Rockv). 2019;23(8):1-144. doi: https://doi.org/10.3310/HTA23080
55. Hamidi S, Yedururi S, Hu MI, et al. Efficacy and Safety of Selective RET Inhibitors in Patients with Advanced Hereditary Medullary Thyroid Carcinoma. Thyroid. 2024;35(1). doi: https://doi.org/10.1089/THY.2024.0495
56. Ortiz M V., Gerdemann U, Raju SG, et al. Activity of the Highly Specific RET Inhibitor Selpercatinib (LOXO-292) in Pediatric Patients With Tumors Harboring RET Gene Alterations . JCO Precis Oncol. 2020;4(4):341-347. doi: https://doi.org/10.1200/PO.19.00401
57. Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021;9(8):491-501. doi: https://doi.org/10.1016/S2213-8587(21)00120-0
58. Subbiah V, Shen T, Terzyan SS, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol. 2021;32(2):261-268. doi: https://doi.org/10.1016/J.ANNONC.2020.10.599
59. Solomon BJ, Tan L, Lin JJ, et al. RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies. J Thorac Oncol. 2020;15(4):541-549. doi: https://doi.org/10.1016/j.jtho.2020.01.006
60. Lin JJ, Liu SV, McCoach CE, et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol. 2020;31(12):1725-1733. doi: https://doi.org/10.1016/j.annonc.2020.09.015
61. Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep. 2024;14(1). doi: https://doi.org/10.1038/S41598-024-61087-2
62. Drilon AE, Zhai D, Rogers E, et al. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J Clin Oncol. 2020;38(15_suppl):3616-3616. doi: https://doi.org/10.1200/JCO.2020.38.15_SUPPL.3616
63. Sherman SI, Clary DO, Elisei R, et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer. 2016;122(24):3856-3864. doi: https://doi.org/10.1002/CNCR.30252
64. Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533-552. doi: https://doi.org/10.1038/S41573-020-0068-6
65. Hong DS, Cabanillas ME, Wheler J, et al. Inhibition of the ras/raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab.2011;96(4):997-1005. doi: https://doi.org/10.1210/JC.2010-1899
66. Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533. doi: https://doi.org/10.1038/S41573-020-0068-6
67. Filetti S, Durante C, Hartl DM, et al. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer. Ann Oncol. 2022;33(7):674-684. doi: https://doi.org/10.1016/j.annonc.2022.04.009
68. Polyakov AP, Pol’kin VV, Agababyan TA, i dr. Medullyarnyj rak shchitovidnoj zhelezy. Klinicheskie rekomendacii . 2024
69. Galuppini F, Censi S, Moro M, et al. Micrornas in medullary thyroid carcinoma: A state of the art review of the regulatory mechanisms and future perspectives. Cells. 2021;10(4). doi: https://doi.org/10.3390/CELLS10040955
70. Galuppini F, Bertazza L, Barollo S, et al. MiR-375 and YAP1 expression profiling in medullary thyroid carcinoma and their correlation with clinical–pathological features and outcome. Virchows Archiv. 2017;471(5):651-658. doi: https://doi.org/10.1007/S00428-017-2227-7
71. Shakiba E, Boroomand S, Kheradmand Kia S, Hedayati M. MicroRNAs in thyroid cancer with focus on medullary thyroid carcinoma: potential therapeutic targets and diagnostic/prognostic markers and web based tools. Oncol Res. 2024;32(6):1011-1019. doi: https://doi.org/10.32604/OR.2024.049235
Supplementary files
|
1. Figure 1. RET receptor, RET-associated signaling pathways and major mutations leading to MTC. Transmembrane receptor tyrosine kinase (RET) consists of 4 domains: cadherin-like domain and cysteine-rich domain (extracellular part), transmembrane domain and intracellular tyrosine kinase domain. After attachment of a complex consisting of a representative of the glial cell line-derived neurotrophic factor family (glial neurotrophic factor/artemin/neuroturin/persephin) + glycosylphosphatidylinositol-related co-receptor alpha and calcium ions, the dimeric GDNF-GFRα-RET complex is formed and activated. After that, autophosphorylation of intracellular tyrosine residues occurs, which in turn mediate the activation of multiple intracellular signaling pathways, including PI3K-AKT, MAPK, JAK and others. Created by Biorender.com ARTN — artemin; Ca — calcium; CRD — cysteine rich domain; CLD 1-4 — cadherin-like domain; GDNF — glial cell line-derived neurotrophic factor; GFL- GDNF— ligands; GFRα 1-4 — glycosylphosphatidylinositol-related receptor alpha 1-4 type; NRTN — neuroturin; P — phosphorus; PSPN — persephin; TK — tyrosine kinase; TMD — transmembrane domain. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(911KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Mesenchymal-like subtype and its main signaling pathways. TGF-β activates SMAD proteins, which suppress E-cadherin expression in the nucleus and induce EMT transcription factors, which reduces cell adhesion and enhances tumor invasiveness. At the same time, the NF-κB pathway is activated: the IKK complex causes IκBα degradation, releasing p65/p50, which stimulate the expression of proinflammatory and EMT-related genes in the nucleus. Hypoxia stabilizes HIF-1α, which enhances angiogenesis and EMT. As a result, cells acquire a motile, invasive phenotype that is resistant to apoptosis and is potentially associated with disease progression. Created in Biorender.com TGF-β — transforming growth factor beta; TNF-α — tumor necrosis factor alpha; TG-βR, TNF-R — receptors; SMAD — intracellular protein family; IKK — NF-κB inhibitor kinase; IκBα — NF-κB inhibitor kinase; HIF-1α — hypoxia-inducible factor 1 alpha; IL6 — interleukin, CCL2, CXCL1 — chemokines; VEGFA — vascular endothelial growth factor A; p50/p65 — transcription factors; CDH-1 — E-cadherin; EMT — epithelial-mesenchymal transition. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(449KB)
|
Indexing metadata ▾ |
|
3. Figure 3. Regulation of MTC pathogenesis via microRNA. Mutations in the RET proto-oncogene promote activation of oncogenic microRNAs (miR-375, miR-183), which in turn suppress the expression of tumor suppressors (PTEN, YAP1) and activate the PI3K/AKT signaling cascade. These processes promote increased cell proliferation, invasion, metastasis, and increased tumor aggression. Decreased expression of miR-127 and miR-451 is associated with worse prognosis. Created in Biorender.com miR — microRNA; PTEN — tumor suppressor gene; YAP1 — transcriptional coactivator; PI3K/AKT — signaling pathway. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(277KB)
|
Indexing metadata ▾ |
Review
For citations:
Chevais A., Gadzhieva K.Sh., Slashchuk K.Yu., Bondarenko E.V., Ebzeeva A.K., Beltsevich D.G. Genetic diagnosis of hereditary and sporadic forms of medullary thyroid cancer: clinical importance and perspectives. Clinical and experimental thyroidology. 2025;21(1):30-41. (In Russ.) https://doi.org/10.14341/ket12832

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).