Preview

Clinical and experimental thyroidology

Advanced search

Stratification of thyroid nodules by Eu-TIRADS categories using transfer learning of convolutional neural networks

https://doi.org/10.14341/ket12724

Abstract

The article describes a method for assessing the malignancy potential of thyroid nodules and their stratification according to the European Thyroid Imaging And Reporting Data System (Eu-TIRADS) scale based on ultrasound diagnostic images using an artificial intelligence system. The method is based on the use of transfer learning technology for multi-parameter models of convolutional neural networks and their subsequent fine tuning. It was shown that even on a small dataset consisting of 1129 thyroid ultrasound images classified by 5 Eu-TIRADS categories, the application of the method provides high training accuracy (Accuracy: 0.8, AUC: 0.92). This makes it possible to introduce and use this technology in clinical practice as an additional tool (‘second opinion’) for an objective assessment of the risk of malignancy in thyroid nodules for the purpose of their further selection for fine needle biopsy.

About the Authors

E. N. Fartushnyi
I.M. Sechenov First Moscow State Medical University
Russian Federation

Eduard N. Fartushnyi; eLibrary SPIN: 9763-4896

Moscow


Competing Interests:

none



Yu. P. Sytch
I.M. Sechenov First Moscow State Medical University
Russian Federation

Yulia P. Sytch - MD, PhD; eLibrary SPIN: 3406-0978.

8-2 Trubetskaya str., Moscow 119991


Competing Interests:

none



I. E. Fartushnyi
I.M. Sechenov First Moscow State Medical University
Russian Federation

Igor E. Fartushnyi

Moscow


Competing Interests:

none



K. A. Koshechkin
I.M. Sechenov First Moscow State Medical University
Russian Federation

Konstantin A. Koshechkin - PhD; eLibrary SPIN: 1709-1219.

Moscow


Competing Interests:

none



G. S. Lebedev
I.M. Sechenov First Moscow State Medical University
Russian Federation

Georgy S. Lebedev - PhD; eLibrary SPIN: 2297-6877.

Moscow


Competing Interests:

none



References

1. Chernikov RA, Vorobjov SL, Slepzov IV, et al. Nodular goiter (epidemiology and diagnostics). Clinical and experimental thyroidology. 2013;9(2):29-35. (In Russ.). doi: https://doi.org/10.14341/ket20139229-35

2. Russ G, Bonnema SJ, Erdogan MF, et al. European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J. 2017;6(5):225-237. doi: https://doi.org/10.1159/000478927

3. Sych YP, Fadeev VV, Fisenko EP, Kalashnikova M. Reproducibility and interobserver agreement of different Thyroid Imaging and Reporting Data Systems (TIRADS). Eur Thyroid J. 2021;10(2):161-167. doi: https://doi.org/10.1159/000508959

4. Tran B, Vu G, Ha G, et al. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. J Clin Med. 2019;8(3):360. doi: https://doi.org/10.3390/jcm8030360

5. Song J, Chai YJ, Masuoka H, et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine (Baltimore). 2019;98(15):e15133. doi: https://doi.org/10.1097/MD.0000000000015133

6. Platforma mashinnogo obuchenija TensorFlow (In Russ.). Доступно по: https://www.tensorflow.org/


Supplementary files

1. Fig. 1. Trained models of convolutional neural networks in the TensorFlow repository and their characteristics (https://www.tensorflow.org/) [6].
Subject
Type Исследовательские инструменты
View (878KB)    
Indexing metadata ▾
2. Fig. 2. Transfer learning model architecture for Eu-TIRADS classification with trained layers of the Xсeption model.
Subject
Type Исследовательские инструменты
View (152KB)    
Indexing metadata ▾
3. Fig. 3. Distribution of initial sizes of ultrasound images in the labeled dataset.
Subject
Type Исследовательские инструменты
View (223KB)    
Indexing metadata ▾
4. Fig. 4. Normalized images (example 1, 4, 5 classes).
Subject
Type Исследовательские инструменты
View (279KB)    
Indexing metadata ▾
5. Fig. 5. RGB profile of the ultrasound image in the sample.
Subject
Type Исследовательские инструменты
View (345KB)    
Indexing metadata ▾
6. Fig. 6. Original and augmented ultrasound image
Subject
Type Исследовательские инструменты
View (171KB)    
Indexing metadata ▾
7. Fig. 7. Distribution by categories of Eu-TIRADS in the labeled dataset
Subject
Type Исследовательские инструменты
View (77KB)    
Indexing metadata ▾
8. Fig. 8. Examples of the thyroid echograms distribution by Eu-TIRADS categories.
Subject
Type Исследовательские инструменты
View (282KB)    
Indexing metadata ▾
9. Fig. 9. Indicators of learning. The diagnostic accuracy of the model (accuracy) (blue graph) increases rapidly with each training epoch
Subject
Type Исследовательские инструменты
View (97KB)    
Indexing metadata ▾
10. Fig. 10. Matrix of errors. Model classes (“Fact” and “Predict” axes) correspond to the following Eu-TIRADS categories: class “0” - Eu-TIRADS 1, class “1” - Eu-TIRADS 2, class “2” - Eu-TIRADS 3, class "3" - Eu-TIRADS 4, class "4" - Eu-TIRADS 5.
Subject
Type Исследовательские инструменты
View (98KB)    
Indexing metadata ▾
11. Rice. 11. ROC-curve (curve of errors of the constructed model). In the “legend”, the numbers indicate the model classes that correspond to the following Eu-TIRADS categories: class “0” - Eu-TIRADS 1, class “1” - Eu-TIRADS 2, class “2” - Eu-TIRADS 3, class “3 "- Eu-TIRADS 4, class "4" - Eu-TIRADS 5.
Subject
Type Исследовательские инструменты
View (230KB)    
Indexing metadata ▾

Review

For citations:


Fartushnyi E.N., Sytch Yu.P., Fartushnyi I.E., Koshechkin K.A., Lebedev G.S. Stratification of thyroid nodules by Eu-TIRADS categories using transfer learning of convolutional neural networks. Clinical and experimental thyroidology. 2022;18(2):17-26. (In Russ.) https://doi.org/10.14341/ket12724

Views: 1354


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)