Preview

Clinical and experimental thyroidology

Advanced search

Lower limit of free thyroxine reference interval in neonates to choose therapeutic tactics for congenital hypothyroidism

https://doi.org/10.14341/ket12771

Abstract

OBJECTIVES: Congenital hypothyroidism (CH) is one of the common thyroid disorders in children. Early detection and prompt initiation of hormone replacement therapy (HRT) are important for further normal neonatal development. In clinical practice, one of the key problems is the differentiation of fT4 level to identify cases of obvious hypothyroidism requiring immediate prescription of levothyroxine, and subclinical hypothyroidism, allowing the clinician to understand the causes of elevated TSH during dynamic monitoring and make a cardinal decision on the need for lifelong HRT.

AIM: To establish the values of the lower limit of the reference interval (LLRI) for fT4 in newborns to decide on therapeutic tactics.

MATERIALS AND METHODS: Until 2013 laboratory tests were performed on a «Wallac DELFIA» analyser (normative values for fT4 9.8–16.8 pmol/l), then on a «bioMerieux VIDAS» analyser (normative values for fT4 10.6–19.4 pmol/l). RI was determined based on the results of cT4 measurements in newborns examined in the neonatal screening framework at the clarifying diagnosis stage.

RESULTS: LLRI for fT4 of all 1596 neonates was 10.9 pmol/l (90% CI 10.5; 11.1), in full term neonates — 11.10 pmol/l, (90% CI 10.70–11.60 pmol/l); in premature neonates — 9.63 pmol/l (90% CI 9.20–11.30 pmol/l).

ONCLUSIONS: in clinical practice, it is reasonable to use the cut-off point for fT4 below 11.0 pmol/l to decide on the need for HRT, irrespective of the day of clarifying diagnosis and gestational age. If the level of fT4 is higher than 11.0 pmol/l, regardless of the level of TSH increase, it is possible to interpret this condition as subclinical hypothyroidism and to choose the tactics of dynamic follow-up with monthly control of thyroid tests. 

About the Authors

L. I. Savelyev
Ural State Medical University
Russian Federation

Leonid I. Savelyev, MD

3 Repina str., Ekaterinburg, Sverdlovsk region, 620014


Competing Interests:

Авторы декларируют отсутствие явных и  потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



A. V. Kiiaev
Ural State Medical University; Regional Child Hospital
Russian Federation

Aleksei V. Kiiaev, MD

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и  потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



A. A. Udachina
Ural State Medical University
Russian Federation

Anastasiya A. Udachina, MD

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и  потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



M. A. Slovak
Ural State Medical University; Regional Child Hospital
Russian Federation

Mariya A. Slovak, MD

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и  потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



T. I. Belyaeva
Clinic and Diagnostic Center
Russian Federation

Tatiyana I. Belyaeva, MD

Yekaterinburg


Competing Interests:

Авторы декларируют отсутствие явных и  потенциальных конфликтов интересов, связанных с содержанием настоящей статьи



References

1. Дедов И.И., Безлепкина О.Б., Вадина Т.А., и др. Скрининг на врожденный гипотиреоз в Российской Федерации // Проблемы эндокринологии. — 2018. — Т. 64. — №1. — С. 14-20

2.

3. Клименко Т.А., Безлепкина О.Б., Чикулаева О.А. Интеллектуальное развитие при врожденном гипотиреозе // Клиническая и экспериментальная тиреоидология. — 2010. — Т. 6. — №4. — С. 17-21

4.

5. Le´ger J, Olivieri A, Donaldson M, et al. ESPE-PES-SLEP-JSPE-APEG-APPES-ISPAE; Congenital Hypothyroidism Consensus Conference Group 2014 European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab. 99:363–384

6.

7. van Trotsenburg P, Stoupa A, Léger J, et al. Congenital hypothyroidism: A 2020–2021 consensus guidelines update— An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid. 2021;31(3):387-419. doi: https://doi.org/10.1089/thy.2020.0333

8.

9. Mehmet Mutlu, Gülay Karagüzel, Yüksel Alıyazicioğlu, et al. Reference intervals for thyrotropin and thyroid hormones and ultrasonographic thyroid volume during the neonatal period. J Matern Fetal Neonatal Med. 2012;25(2):120-4. doi: https://doi.org/10.3109/14767058.2011.561894

10.

11. Dana Bailey, David Colantonio, Lianna Kyriakopoulou, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59(9):1393-405. doi: https://doi.org/10.1373/clinchem.2013.204222

12.

13. Jayasuriya MS, Choy KW, Chin LK, et al. Reference intervals for neonatal thyroid function tests in the first 7 days of life. J Pediatr Endocrinol Metab. 2018;31(10):1113-1116. doi: https://doi.org/10.1515/jpem-2018-0007

14.

15. Omuse G, Kassim A, Kiigu F, Hussain SR, Limbe M. Reference intervals for thyroid stimulating hormone and free thyroxine derived from neonates undergoing routine screening for congenital hypothyroidism at a university teaching hospital in Nairobi, Kenya: a cross sectional study. BMC Endocr Disord. 2016;16(1):23. doi: https://doi.org/10.1186/s12902-016-0107-9

16.

17. Hoq M, Karlaftis V, Mathews S, et al. A prospective, crosssectional study to establish age-specific reference intervals for neonates and children in the setting of clinical biochemistry, immunology and haematology: the HAPPI Kids study protocol. BMJ Open. 2019;9(4):e025897. doi: https://doi.org/10.1136/bmjopen-2018-025897

18.

19. Naafs JC, Heinen CA, Zwaveling-Soonawala N, et al. Age-Specific Reference Intervals for Plasma Free Thyroxine and Thyrotropin in Term Neonates During the First Two Weeks of Life. Thyroid. 2020;30(8):1106-1111. doi: https://doi.org/10.1089/thy.2019.0779

20.

21. Omuse G, Kawalya D, Mugaine P, Chege A, Maina D. Neonatal reference intervals for thyroid stimulating hormone and free thyroxine assayed on a Siemens Atellica® IM analyzer: a cross sectional study. BMC Endocr Disord. 2023;23(1):112. doi: https://doi.org/10.1186/s12902-023-01367-6

22.

23. Kang MJ, Chung HR, Oh YJ, Shim YS, Yang S, Hwang IT. Threeyear follow-up of children with abnormal newborn screening results for congenital hypothyroidism. Pediatr Neonatol. 2017. doi: https://doi.org/10.1016/j.pedneo.2017.01.002

24.

25. Zdraveska N, Zdravkovska M, Anastasovska V, Sukarova-Angelovska E, Kocova M. Diagnostic re-evaluation of congenital hypothyroidism in Macedonia: predictors for transient or permanent hypothyroidism. Endocr Connect. 2018;7(2):278-285. doi: https://doi.org/10.1530/EC-17-0332

26.

27. Park IS, Yoon JS, So CH, Lee HS, Hwang JS. Predictors of transient congenital hypothyroidism in children with eutopic thyroid gland. Ann Pediatr Endocrinol Metab. 2017. doi: https://doi.org/10.6065/apem.2017.22.2.115

28.

29. Петеркова В.А., Безлепкина О.Б., Ширяева Т.Ю., и др. Клинические рекомендации «Врожденный гипотиреоз» // Проблемы эндокринологии. — 2022. — Т. 68. — №2. — С.90-103

30.

31. Шрёдер Е.В., Ширяева Т.Ю., Нагаева Е.В., Безлепкина О.Б. Клинические рекомендации по врожденному гипотиреозу Европейского Общества детских эндокринологов (ESPE) и Европейского эндокринологического общества (ESO): основные положения и комментарии // Клиническая и экспериментальная тиреоидология. — 2021. — Т. 17. — №2. — С. 4-12

32.

33. CLSI EP28-A3C. Defining, establishing, and verifying reference intervals in the clinical laboratory. Wayne PAL Clin Lab Stand Inst. 2010

34.

35. Haeckel R, Wosniok W, Streichert T. Review of potentials and limitations of indirect approaches for estimating reference limits/intervals of quantitative procedures in laboratory medicine. J Lab Med. 2021;45(2):35-53. doi: https://doi.org/10.1515/labmed-2020-0131


Supplementary files

1. Figure 1: Relationship between child's age and FT4 level. Slope coefficient b=-0.246 (95% CI -0.275; -0.217), p<0.001. Blue thick line is the linear regression line, blue thin lines are 95% CI of the linear regression line, dashed lines limit the 95% predicted regression interval.
Subject
Type Исследовательские инструменты
View (186KB)    
Indexing metadata ▾
2. Figure 2: Relationship between birth weight and FT4 levels. Slope coefficient b=9.2408E-05 (95% CI 1.9186E-04; 3.7667E-04), p=0.524. Blue thick line is the linear regression line, blue thin lines are 95% CI of the linear regression line, dashed lines limit the 95% predicted regression interval.
Subject
Type Исследовательские инструменты
View (192KB)    
Indexing metadata ▾
3. Figure 3: Dependence of FT4 concentration on gestational age in preterm infants. Slope coefficient b=-0.08301 (95% CI -0.35506; 0.18904), p=0.546. Blue thick line is the linear regression line, blue thin lines are 95% CI of the linear regression line, dashed lines limit the 95% predicted regression interval.
Subject
Type Исследовательские инструменты
View (135KB)    
Indexing metadata ▾
4. Figure 4: Dependence of the distribution of FT4 levels on neonatal age among term (left) and preterm infants (right). For the term infants, the slope coefficient b=-0.2595, p<0.001. For preterm infants, the slope coefficient is b=-0.1525, p<0.001. Blue thick line is the linear regression line, blue thin lines are 95% CI of the linear regression line, dashed lines limit the 95% predicted regression interval.
Subject
Type Исследовательские инструменты
View (252KB)    
Indexing metadata ▾

Review

For citations:


Savelyev L.I., Kiiaev A.V., Udachina A.A., Slovak M.A., Belyaeva T.I. Lower limit of free thyroxine reference interval in neonates to choose therapeutic tactics for congenital hypothyroidism. Clinical and experimental thyroidology. 2023;19(3):22-28. (In Russ.) https://doi.org/10.14341/ket12771

Views: 213


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)