Autoimmune thyroiditis — what is new?
https://doi.org/10.14341/ket12781
Abstract
Recently, the prevalence of autoimmune diseases has been steadily increasing among the population, posing a significant problem for healthcare. One of the most common autoimmune pathologies is autoimmune thyroiditis (AIT). Due to the absence of prognostic markers to predict outcomes of AIT, such as the development of hypothyroidism, there is an increasing necessity for molecular-genetic research into the autoimmune changes occurring within this disease. This research is likely to contribute to the development of new diagnostic methods and the identification of key aspects of pathogenesis, thereby preventing the development of the autoimmune process. One area of research includes analyzing the impact of environmental factors on the autoimmune process. Investigating the relationships between factors and stages of AIT pathogenesis can form the basis for methods aimed at modifying these factors to prevent disease progression. Studying the comorbidity of autoimmune diseases and the relationships between various thyroid pathologies of different etiologies, helps identify high-risk groups for subsequent screening and early detection. Thus, exploring the molecular-biological basis of AIT development lays the foundation for developing effective strategies in prevention, diagnosis, and therapy, aimed at improving the quality of life of patients.
About the Authors
M. P. KazakovaRussian Federation
Maria P. Kazakova, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
A. A. Tskaeva
Russian Federation
Alla A. Tskaeva, MD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
E. A. Starostina
Russian Federation
Evgenia A. Starostina, MD, PhD
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
E. A. Troshina
Russian Federation
Ekaterina A. Troshina, MD, PhD, Professor
Moscow
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.
References
1. Gerasimov GA, Mel’nichenko GA, Fadeev VV. Mify otechestvennoy tireoidologii i autoimmunnyy tireoidit // Consilium Medicum. 2001;3(11):525-531(In Russ.).
2. Kolanu ND, Awan NA, Butt AI, Reza T, et al. From Antibodies to Artificial Intelligence: A Comprehensive Review of Diagnostic Challenges in Hashimoto’s Thyroiditis. Cureus. 2024;16(2):e54393. doi: https://doi.org/10.7759/cureus.54393
3. Nathalie C, Shivani M, Jan YV, Geert V, et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. The Lancet. 2023;401:1878-1890. doi: https://doi.org/10.1016/S0140-6736(23)00457-9
4. Tomer Y, Davies TF. Searching for the Autoimmune Thyroid Disease Susceptibility Genes: From Gene Mapping to Gene Function. Endocr Rev. 2003;24(5):694-717. doi: https://doi.org/10.1210/er.2002-0030
5. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14(2):174-180. doi: https://doi.org/10.1016/j.autrev.2014.10.016
6. Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol. 2013;9(5):277-287. doi: https://doi.org/10.1038/nrendo.2013.56
7. Troshina EA, Senyushkina ES, Terekhova MA. The role of selenium in the pathogenesis of thyroid disease. Clinical and experimental thyroidology. 2018;14(4):192-205. (In Russ.).] doi: https://doi.org/10.14341/ket10157.
8. Wu Q, Rayman MP, Lv H, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015. doi: https://doi.org/10.1210/jc.2015-2222
9. Bülow Pedersen I, Knudsen N, Carlé A, Schomburg L, et al. Serum selenium is low in newly diagnosed Graves’ disease: a population-based study. Clin Endocrinol (Oxf). 2013;79(4):584-90. doi: https://doi.org/10.1111/cen.12185
10. Troshina EA, Senyushkina ES, Ioutsi VA, Nikankina LV. Issledovanie mikroelementov syvorotki krovi v sopostavlenii so strukturno-funkcional’nymi harakteristikami zoba i nositel’stvom antitireoidnyh antitel v ryade regionov Rossii. Voprosy pitaniya. 2022;91(6):85-91 (In Russ.).] doi: https://doi.org/0042-8833-2022-91-6-85-91
11. Federige MAF, Romaldini JH, Miklos A, Koike MK, et al. Serum selenium and selenoprotein-p levels in autoimmune thyroid diseases patients in a select center: A transversal study. Arch Endocrinol Metab. 2017;61(6):600–7. doi: https://doi.org/10.1590/2359-3997000000309
12. Wang F, Li C, Li S, Cui L, Zhao J, Liao L. Selenium and thyroid diseases. Front Endocrinol (Lausanne). 2023;14:1133000. doi: https://doi.org/10.3389/fendo.2023.1133000
13. Li Y, Zuo X, Hua C, Zhao Y, Pei X, Tian M. Effects of Selenium Supplement on B Lymphocyte Activity in Experimental Autoimmune Thyroiditis Rats. Int J Endocrinol. 2021. doi: https://doi.org/10.1155/2021/9439344
14. Pigarova EA, Mazurina NV, Troshina EA. Vitamin D in the prevention of bone and metabolic disorders. Consilium Medicum. 2019;21(4):84-90 (In Russ.).] doi: https://doi.org/10.26442/20751753.2019.4.190342
15. Taheriniya S, Arab A, Hadi A, Fadel A, Askari G. Vitamin D and Thyroid Disorders: A Systematic Review and Meta-Analysis of Observational Studies. BMC Endocr. Disord. 2021;21:171. doi: https://doi.org/10.1186/s12902-021-00831-5
16. Štefanić M, Tokić S. Serum 25-Hydoxyvitamin D Concentrations in Relation to Hashimoto’s Thyroiditis: A Systematic Review, Meta-Analysis and Meta-Regression of Observational Studies. Eur. J. Nutr. 2020;59:859–872. doi: https://doi.org/10.1007/s00394-019-01991-w
17. Evliyaoğlu O, Acar M, Özcabı B, Erginöz E, et al. Vitamin D Deficiency and Hashimoto’s Thyroiditis in Children and Adolescents: A Critical Vitamin D Level for This Association? J. Clin. Res. Pediatr. Endocrinol. 2015;7:128–133. doi: https://doi.org/10.4274/jcrpe.2011
18. De Pergola G, Triggiani V, Bartolomeo N, Giagulli VA, et al. Low 25 Hydroxyvitamin D Levels Are Independently Associated with Autoimmune Thyroiditis in a Cohort of Apparently Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets. 2018;18:646–652. doi: https://doi.org/10.2174/1871530318666180406163426
19. D’Aurizio F, Villalta D, Metus P, Doretto P, Tozzoli R. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun Rev. 2015;14(5):363-9. doi: https://doi.org/10.1016/j.autrev.2014.10.008
20. Cvek M, Kaličanin D, Barić A, Vuletić M, et al. Vitamin D and Hashimoto’s Thyroiditis: Observations from CROHT Biobank. Nutrients. 2021;13(8):2793. doi: https://doi.org/10.3390/nu13082793
21. Taheriniya S, Arab A, Hadi A, Fadel A, Askari G. Vitamin D and thyroid disorders: a systematic review and Meta-analysis of observational studies. BMC Endocr Disord. 2021;21(1):171. doi: https://doi.org/10.1186/s12902-021-00831-5
22. Hahn J, Cook NR, Alexander EK, Friedman S, et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ. 2022;376:e066452. doi: https://doi.org/10.1136/bmj-2021-066452
23. Botelho Botelho IMB, Moura Neto A, Silva CA, Tambascia MA, et al. Vitamin D in Hashimoto’s thyroiditis and its relationship with thyroid function and inflammatory status. Endocr J. 2018;65(10):1029-1037. doi: https://doi.org/10.1507/endocrj
24. Bscheider M, Butcher EC. Vitamin D immunoregulation through dendritic cells. Immunology. 2016;148(3):227-36. doi: https://doi.org/10.1111/imm.12610
25. Cyprian F, Lefkou E, Varoudi K, Girardi G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front Immunol. 2019;10:2739. doi: https://doi.org/10.3389/fimmu.2019.02739
26. Rolf L, Muris AH, Hupperts R, Damoiseaux J. Illuminating vitamin D effects on B cells--the multiple sclerosis perspective. Immunology. 2016;147(3):275-84. doi: https://doi.org/10.1111/imm.12572
27. Zhao R, Zhang W, Ma C, Zhao Y, Xiong R, et al. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021;12:574967. doi: https://doi.org/10.3389/fimmu.2021.574967
28. Liu K, Zhang P, Zhou L, Han L, Zhao L, Yu X. Research progress in the construction of animal models of autoimmune thyroiditis. Autoimmunity. 2024;57(1):2317190. doi: https://doi.org/10.1080/08916934.2024.2317190
29. Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells. 2023;12(6):918. doi: https://doi.org/10.3390/cells12060918
30. Rodríguez-Muñoz A, Vitales-Noyola M, Ramos-Levi A, Serrano-Somavilla A, González-Amaro R, Marazuela M. Levels of regulatory T cells CD69+NKG2D+IL-10+ are increased in patients with autoimmune thyroid disorders. Endocrine. 2016;51(3):478-489. doi: https://doi.org/10.1007/s12020-015-0662-2
31. McLachlan SM, Rapoport B. Discoveries in Thyroid Autoimmunity in the Past Century. Thyroid. 2022. doi: https://doi.org/10.1089/thy.2022.0275
32. Chen CR, Hamidi S, Braley-Mullen H, Nagayama Y, et al. Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology. 2010;151:4583–4593. doi: https://doi.org/10.1210/en.2010-0321
33. Eleftheriadou AM, Mehl S, Renko K, Kasim RH, et al. Re-visiting autoimmunity to sodium-iodide symporter and pendrin in thyroid disease. Eur. J. Endocrinol. 2020;183:571–580. doi: https://doi.org/10.1530/EJE-20-0566
34. Shaoyang K, Junning K, Haitao S, Na Wu. Advances in regulatory B cells in autoimmune thyroid diseases. International Immunopharmacology. 2021;96. doi: https://doi.org/10.1016/j.intimp.2021.107770
35. Weetman AP. The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur Thyroid J. 2013;1(4):243-50. doi: https://doi.org/10.1159/000343834
36. Lenti MV, Rossi CM, Melazzini F, et al. Seronegative autoimmune diseases: a challenging diagnosis. Autoimmun Rev. 2022;21:103143
37. Zadeh-Vakili A, Faam B, Afgar A, et al. A systematic review of dysregulated microRNAs in Hashimoto’s thyroiditis. Endocrine. 2024. doi: https://doi.org/10.1007/s12020-023-03673-4
38. Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett. 2020;227:8-27. doi: https://doi.org/10.1016/j.imlet.2020.07.008
39. Liu Y, Ding X, Xiong S, et al. Circulating microRNA Expression Profiling Identifies miR-125a-5p Promoting T Helper 1 Cells Response in the Pathogenesis of Hashimoto’s Thyroiditis. Front Immunol. 2020;11. doi: https://doi.org/10.3389/fimmu.2020.01195
40. Trummer O, Foessl I, Schweighofer N, et al. Expression Profiles of miR-22-5p and miR-142-3p Indicate Hashimoto’s Disease and Are related to Thyroid Antibodies. Genes (Basel). 2022. doi: https://doi.org/10.3390/genes13020171
41. Imam S, et al. Nature of coexisting thyroid autoimmune disease determines success or failure of tumor immunity in thyroid cancer. J. Immunother. Cancer. 2019;7:1-3. doi: https://doi.org/10.1186/s40425-018-0483-y
42. Troshina EA, Makolina NP, Kolpakova EA, Nikiforovich PA, et al. Structural and morphologic characteristics of nodular goiter in chronic iodine deficiency status. Clinical and experimental thyroidology. 2023;19(1):20-28. (In Russ.)]. doi: https://doi.org/10.14341/ket12748
43. Troshina EA, Makolina NP, Platonova NM, Isaeva MP, et al. The problem of iodine deficiency in the Chechen republic: assessment of the current state and ways of solution. Problems of Endocrinology. 2023;69(4):38-49. (In Russ.)]. doi: https://doi.org/10.14341/probl13306
44. Abbasgholizadeh P, Naseri A, Nasiri E, Sadra V. Is Hashimoto thyroiditis associated with increasing risk of thyroid malignancies? A systematic review and meta-analysis. Thyroid Res. 2021;14(1):26. doi: https://doi.org/10.1186/s13044-021-00117-x
45. Liu YJ, Miao HB, Lin S, Chen Z. Association between rheumatoid arthritis and thyroid dysfunction: a meta-analysis and systematic review. Front Endocrinol (Lausanne) 2022;13:1015516. doi: https://doi.org/10.3389/fendo.2022.1015516
46. Boelaert K, Newby PR, Simmonds MJ, , et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med. 2010;123(2):183 e1–9. doi: https://doi.org/10.1016/j.amjmed.2009.06.030
47. Waldenlind K, Delcoigne B, Saevarsdottir S, Askling J. Disease-modifying antirheumatic drugs and risk of thyroxine-treated autoimmune thyroid disease in patients with rheumatoid arthritis. Journal of Internal Medicine. 2023.295:(3),313-321. doi: https://doi.org/10.1111/joim.13743
48. Chen K, Wei Y, Sharp GC, Braley-Mullen H. Decreasing TNF-alpha results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. J Leukoc Biol. 2007;81(1):306-14. doi: https://doi.org/10.1189/jlb.0606402
Supplementary files
|
1. Figure 1: Mechanisms of thyroid tissue destruction in autoimmune thyroiditis (adapted from European Thyroid Journal 11, 1; 10.1530/ETJ-21-0024). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(280KB)
|
Indexing metadata ▾ |
|
2. Figure 2: Increasing prevalence of thyroid cancer (data from the National Cancer Institute). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(163KB)
|
Indexing metadata ▾ |
Review
For citations:
Kazakova M.P., Tskaeva A.A., Starostina E.A., Troshina E.A. Autoimmune thyroiditis — what is new? Clinical and experimental thyroidology. 2023;19(4):4-12. (In Russ.) https://doi.org/10.14341/ket12781

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).