Study of molecular basis of thyroid dysgenesis
https://doi.org/10.14341/ket9556
Abstract
Congenital hypothyroidism is a heterogeneous group of diseases, which is manifested by loss of function of the thyroid gland that affects infants from birth. 80–85% of cases are due to different types of thyroid dysgenesis. 5 genes have been described that are involved in the pathogenesis of thyroid dysgenesis: TSHR, PAX8, FOXE1, NKX2-1, NKX2-5.
Aims. To evaluate the prevalence of mutations in the genes TSHR, PAX8, FOXE1, NKX2-1, NKX2-5 among patients with severe congenital hypothyroidism.
Materials and methods. 161 patients (64 boys, 97 girls) with congenital hypothyroidism (TSH levels at neonatal screening or retesting greater than 90 mU/l) were included in the study. 138 subjects had different variants of thyroid dysgenesis, and 23 patients had normal volume of the gland. A next generation sequencing was used for molecular-genetic analysis. Sequencing was performed using PGM semiconductor sequencer (Ion Torrent, Life Technologies, USA) and a panel “Hypothyroidism” (Custom DNA Panel). Assessment of the pathogenicity of sequence variants were carried out according to the latest international guidelines (ACMG, 2015).
Results. 13 patients had variants in thyroid dysgenesis genes (8,1%, 13/161): TSHR, n = 6; NKX2-1, n = 3; NKX2-5, n = 1; PAX8, n = 3; FOXE1, n = 0.
Conclusions. Mutations in thyroid dysgenesis genes are a rare pathology. The majority of variants among our patients were identified in TSHR.
About the Authors
Nina A. MakretskayaEndocrinology Research Centre
Russian Federation
MD, research associate
Olga B. Bezlepkina
Endocrinology Research Centre
Russian Federation
MD, PhD, Professor
Anna A. Kolodkina
Endocrinology Research Centre
Russian Federation
MD, PhD, senior research associate
Alexey V. Kiyaev
Ural State Medical University
Russian Federation
MD, PhD, assistant professor
Evgeny V. Vasilyev
Endocrinology Research Centre
Russian Federation
PhD, senior research associate
Vasily M. Petrov
Endocrinology Research Centre
Russian Federation
PhD, senior research associate
Olga A. Chikulaeva
Endocrinology Research Centre
Russian Federation
MD, PhD
Oleg A. Malievsky
Republican Children’s Clinical Hospital
Russian Federation
MD, PhD, Professor
Ivan I. Dedov
Endocrinology Research Centre
Russian Federation
MD, PhD, Professor
Anatoliy N. Tyulpakov
Endocrinology Research Centre
Russian Federation
MD, PhD
References
1. Devos H, Rodd C, Gagne N, et al. A search for the possible molecular mechanisms of thyroid dysgenesis: sex ratios and associated malformations. J Clin Endocrinol Metab. 1999;84(7): 2502-2506. doi: 10.1210/jcem.84.7.5831.
2. Bubuteishvili L, Garel C, Czernichow P, Léger J. Thyroid abnormalities by ultrasonography in neonates with congenital hypothyroidism. J Pediatr. 2003;143(6):759-764. doi: 10.1067/s0022-3476(03)00537-7.
3. Van Vliet G, Deladoey J. Hypothyroidism in infants and children: congenital hypothyroidism. In: Braverman LE, Cooper D, editors. Werner & Ingbar’s the thyroid: a fundamental and clinical text. 10th ed. Philadelphia: Lippincott Williams and Wilkins; 2012. p. 790–802.
4. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis. 2010;5(1):17. doi: 10.1186/1750-1172-5-17.
5. Szinnai G. Clinical genetics of congenital hypothyroidism. Endocr Dev. 2014;26:60-78. doi: 10.1159/000363156.
6. Lints TJ, Parsons LM, Hartley L, et al. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993;119(2):419-431.
7. Dentice M, Cordeddu V, Rosica A, et al. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab. 2006;91(4): 1428-1433. doi: 10.1210/jc.2005-1350.
8. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: 10.1093/nar/gkq603.
9. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5):405-424. doi: 10.1038/gim.2015.30.
10. den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016;37(6):564-569. doi: 10.1002/humu.22981.
11. Sunthornthepvarakui T, Gottschalk ME, Hayashi Y, Refetoff S. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995;332(3):155-160. doi: 10.1056/NEJM199501193320305.
12. Макрецкая НА, Калинченко НЮ, Васильев ЕВ, и др. Клинический случай врожденного гипотиреоза, обусловленного дефектом гена NKX2-1. // Проблемы эндокринологии. – 2016. – Т. 62. – №3. – С. 21–24. [Makretskaya NA, Kalinchenko NY, Vasiliev EV, et al. Case of congenital hypothyroidism related to NKX2-1. Problems of Endocrinology. 2016;62(3):21-24. (In Russ.)] doi: 10.14341/probl201662321-24.
13. Gras D, Jonard L, Roze E, et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry. 2012;83(10):956-962. doi: 10.1136/jnnp-2012-302505.
14. Montanelli L, Tonacchera M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol Cell Endocrinol. 2010;322(1-2):64-71. doi: 10.1016/j.mce.2010.03.009.
15. Narumi S, Muroya K, Abe Y, et al. TSHR mutations as a cause of congenital hypothyroidism in Japan: a population-based genetic epidemiology study. J Clin Endocrinol Metab. 2009;94(4):1317-1323. doi: 10.1210/jc.2008-1767.
16. Al Taji E, Biebermann H, Limanova Z, et al. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. Eur J Endocrinol. 2007;156(5):521-529. doi: 10.1530/EJE-06-0709.
17. Bamforth JS, Hughes IA, Lazarus JH, et al. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26(1):49-51. doi: 10.1136/jmg.26.1.49.
18. Cassio A, Nicoletti A, Rizzello A, et al. Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J Clin Res Pediatr Endocrinol. 2013;5 Suppl 1:29-39. doi: 10.4274/jcrpe.864.
19. Plachov D, Chowdhury K, Walther C, et al. PAX8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development. 1990;110(2):643-651.
20. de Sanctis L, Corrias A, Romagnolo D, et al. Familial PAX8 small deletion (c.989_992delACCC) associated with extreme phenotype variability. J Clin Endocrinol Metab. 2004;89(11):5669-5674. doi: 10.1210/jc.2004-0398.
21. Bamforth JS, Hughes IA, Lazarus JH, et al. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26(1):49-51. doi: 10.1136/jmg.26.1.49.
22. Clifton-Bligh RJ, Wentworth JM, Heinz P, et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet. 1998;19(4):399-401. doi: 10.1038/1294.
23. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6.
24. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616): 285-291. doi: 10.1038/nature19057.
Supplementary files
|
1. The spectrum of nucleotide changes revealed in the genes responsible for the development of thyroid dysgenesis, and the clinical characteristics of patients | |
Subject | ||
Type | Исследовательские инструменты | |
View
(286KB)
|
Indexing metadata ▾ |
|
2. Results of MLPA in patient N11. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(293KB)
|
Indexing metadata ▾ |
Review
For citations:
Makretskaya N.A., Bezlepkina O.B., Kolodkina A.A., Kiyaev A.V., Vasilyev E.V., Petrov V.M., Chikulaeva O.A., Malievsky O.A., Dedov I.I., Tyulpakov A.N. Study of molecular basis of thyroid dysgenesis. Clinical and experimental thyroidology. 2018;14(2):64-71. (In Russ.) https://doi.org/10.14341/ket9556

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).