Preview

Clinical and experimental thyroidology

Advanced search

The role of selenium in the pathogenesis of thyroid disease

Abstract

The past few years have been actively discussing the role of individual macro- and micronutrients as factors regulating the functional activity of organs and systems and reducing the risk of developing a number of diseases, including thyroid diseases.


Selenium is one of the most important and intensively studied at present microelements. According to several studies, its low plasma level is associated with an increased risk of developing autoimmune thyroid diseases. In animal experiments, it was shown that a combined deficiency of selenium and iodine leads to more pronounced hypothyroidism than iodine deficiency alone. Some authors believe that cretinism in the newborn is a consequence of the combined deficiency of these two elements in the mother. It is also important that the optimal level of selenium is necessary both to initiate an immune response and to regulate an excessive immune response, as well as chronic inflammation.


The review article discusses the relationship between selenium and thyroid pathology, discusses the role of selenium in the physiology of the thyroid gland and in the development of autoimmune diseases. The biochemical aspects of the pathogenesis of thyroid disease are presented.

About the Authors

Ekaterina A. Troshina

Endocrinology Research Centre


Russian Federation

MD, PhD, Professor



Evgeniya S. Senyushkina

Endocrinology Research Centre


Russian Federation

MD



Maria A. Terekhova

I.M. Sechenov First Moscow State Medical University (Sechenov University)


Russian Federation

student



References

1. Zheng H, Wei J, Wang L, et al. Effects of selenium supplementation on Graves’ disease: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2018;2018:3763565. doi: https://doi.org/10.1155/2018/3763565.

2. Szeliga A, Czyzyk A, Niedzielski P, et al. Assessment of serum selenium concentration in patients with autoimmune thyroiditis in Poznan district. Pol Merkur Lekarski. 2018;45(268):150-153.

3. Wang W, Mao J, Zhao J, et al. Decreased thyroid peroxidase antibody titer in response to selenium supplementation in autoimmune thyroiditis and the influence of a SEPP gene polymorphism: a prospective, multicenter study in China. Thyroid. 2018. doi: https://doi.org/10.1089/thy.2017.0230.

4. Тутельян В.А., Княжев В.А., Хотимченко С.А., и др. Селен в организме человека: метаболизм, антиоксидантные свойства, роль в канцерогенезе. – M.: Издательство РАМН; 2002. [Tutel’yan VA, Knyazhev VA, Khotimchenko SA, et al. Selen v organizme cheloveka: metabolizm, antioksidantnye svoystva, rol’ v kantserogeneze. Moscow: Izdatel’stvo RAMN; 2002. (In Russ.)]

5. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015; 48(3):756-775. doi: https://doi.org/10.1007/s12020-014-0477-6.

6. Kohrle J. Pathophysiological relevance of selenium. J Endocrinol Invest. 2013;36(10 Suppl):1-7.

7. Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf). 2013;78(2):155-164. doi: https://doi.org/10.1111/cen.12066.

8. Шабалина Е.А., Моргунова Т.Б., Орлова С.В., Фадеев В.В. Селен и щитовидная железа. // Клиническая и экспериментальная тиреоидолгия. – 2011. – Т. 7. – №2. – С. 7-18. [Shabalina EA, Morgunova TB, Orlova SV, Fadeyev VV. Selenium and thyroid gland. Clinical and experimental thyroidology. 2011;7(2):7-18. (In Russ.)] doi: https://doi.org/10.14341/ket2011727-18.

9. Santos LR, Neves C, Melo M, Soares P. Selenium and selenoproteins in immune mediated thyroid disorders. Diagnostics (Basel). 2018;8(4). doi: https://doi.org/10.3390/diagnostics8040070.

10. Кузнецова И.В., Бурчаков Д.И. Гормональная контрацепция и микронутриенты: задача, требующая решения. // Consilium Medicum. – 2014. – Т. 16. – №6. – С. 33-42. [Kuznetsova IV, Burchakov DI. Gormonal’naya kontratseptsiya i mikronutrienty: zadacha, trebuyushchayaresheniya. Consilium Medicum. 2014; 16(6):33-42. (In Russ.)]

11. Khurana A, Tekula S, Saifi MA, et al. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802-812. doi: https://doi.org/10.1016/j.biopha.2018.12.146.

12. Carlson BA, Lee BJ, Tsuji PA, et al. Selenocysteine tRNA([Ser]Sec), the central component of selenoprotein biosynthesis: isolation, identification, modification, and sequencing. Methods Mol Biol. 2018;1661:43-60. doi: https://doi.org/10.1007/978-1-4939-7258-6_4.

13. Гарднер Д., Шобек Д. Базисная и клиническая эндокринология. Книга 2. – М.: БИНОМ; 2018. [Gardner D, Shoback D. Basic & Clinical Endocrinology. Book 2. Moscow: BINOM; 2018. (In Russ.)]

14. Трошина Е.А. Зоб. – М.: Медицинское информационное агентство; 2012. [Troshina EA. Zob. Moscow: Meditsinskoe informatsionnoe agenstvo; 2012. (In Russ.)]

15. Larsen PR, Zavacki AM. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J. 2012;1(4):232-242. doi: https://doi.org/10.1159/000343922.

16. Harada A, Nomura E, Nishimura K, et al. Type 1 and type 2 iodothyronine deiodinases in the thyroid gland of patients with huge goitrous Hashimoto’s thyroiditis. Endocrine. 2019. doi: https://doi.org/10.1007/s12020-019-01855-7.

17. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: from pathophysiology to treatment. Int J Endocrinol. 2017;2017:1297658. doi: https://doi.org/10.1155/2017/1297658.

18. Bartalena L, Baldeschi L, Boboridis K, et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid J. 2016;5(1):9-26. doi: https://doi.org/10.1159/000443828.

19. Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392-401. doi: https://doi.org/10.1097/MED.0000000000000190.

20. Stoffaneller R, Morse N. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7(3):1494-1537. doi: https://doi.org/10.3390/nu7031494.

21. Thiry C, Ruttens A, Pussemier L, Schneider YJ. An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability. Br J Nutr. 2013;109(12):2126-2134. doi: https://doi.org/10.1017/S0007114512004412.

22. Wu Q, Rayman MP, Lv H, et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab. 2015;100(11):4037-4047. doi: https://doi.org/10.1210/jc.2015-2222.

23. Moon S, Chung HS, Yu JM, et al. Association between serum selenium level and the prevalence of diabetes mellitus in U.S. population. J Trace Elem Med Biol. 2019;52:83-88. doi: https://doi.org/10.1016/j.jtemb.2018.12.005.

24. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705-743. doi: https://doi.org/10.1089/ars.2011.4145.

25. Alghobashy AA, Alkholy UM, Talat MA, et al. Trace elements and oxidative stress in children with type 1 diabetes mellitus. Diabetes Metab Syndr Obes. 2018;11:85-92. doi: https://doi.org/10.2147/DMSO.S157348.


Supplementary files

1. Fig. 1. Food chain of selenium transfer from the soil to the human body.
Subject
Type Other
View (17KB)    
Indexing metadata ▾
2. Fig. 2. Comparison of the structure of selenocysteine and cysteine.
Subject
Type Other
View (19KB)    
Indexing metadata ▾
3. Fig. 3. Probable molecular mechanism for incorporation of selenocysteine into proteins during the translation process. The sel B protein interacts with the “hairpin” structure of the 3’-untranslated region of the mRNA, preventing the interruption of translation on the UGA codon and the insertion of selenocysteine.
Subject
Type Other
View (148KB)    
Indexing metadata ▾
4. Fig. 4. Biosynthesis of selenium-containing protein starts from serine (Ser) to tRNA (Sec tRNA) with the formation of Ser-Sec tRNA. Then, Serc-SeRn Serc-tRNA residue Sec is phosphorylated and converted to selenocysteyl-tRNA (Sec-tRNA sec). Sec-tRNA is used as a Sec transition into the selenium-containing protein through the action of cis-elements present in the selenium protein mRNA and protein factors, including SECIS-binding protein 2 (SBP2) and Sec-specific translational elongation factor (EF sec).
Subject
Type Other
View (73KB)    
Indexing metadata ▾
5. Fig. 5. Selenium proteins of thyrocytes.
Subject
Type Other
View (179KB)    
Indexing metadata ▾
6. Fig. 6. The role of specific selenium-containing proteins in the synthesis of thyroid hormones.
Subject
Type Other
View (311KB)    
Indexing metadata ▾

Review

For citations:


Troshina E.A., Senyushkina E.S., Terekhova M.A. The role of selenium in the pathogenesis of thyroid disease. Clinical and experimental thyroidology. 2018;14(4):192-205. (In Russ.)

Views: 130340


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)