On the overdiagnosis and overtreatment of thyroid carcinoma after the Chernobyl accident
https://doi.org/10.14341/ket10086
Abstract
On the basis of the linear no-threshold theory, the Chernobyl accident was predicted to result in an incidence increase of various malignancies. In fact, there has been no cancer increase proven to be a consequence of the radiation exposure after the accident except for thyroid carcinoma in people exposed at a young age. Prior to the accident, thyroid cancer had been rarely diagnosed in children and adolescents. The ability of screening to enhance the registered incidence of thyroid tumors is known. The screening after the accident detected not only small tumors but also large neglected ones, sometimes misclassified as aggressive radiogenic cancers, which contributed to the concept of their aggressive behavior and early metastasizing. This had consequences for the practice: some experts recommended a more radical surgical treatment of supposedly radiogenic thyroid cancers. Such recommendations are generally not in agreement with the international practice. In conclusion, the treatment of Chernobyl-related thyroid carcinoma should not be different from that of sporadic one.
Keywords
About the Author
Sergei V. JarginRUDN University
Russian Federation
PhD in medicine, associate professor, department of pathology
References
1. Annex D. Health effects due to radiation from the Chernobyl accident. In: UNSCEAR. Sources and effects of ionizing radiation. New York: United Nations; 2008. p. 45-219.
2. Demidchik YE, Saenko VA, Yamashita S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol. 2007;51(5):748-762. doi: https://doi.org/10.1590/s0004-27302007000500012.
3. Лушников Е.Ф., Цыб А.Ф., Ямасита С. Рак щитовидной железы в России после Чернобыля. – М.: Медицина; 2006. [Lushnikov EF, Tsyb AF, Yamasita S. Rak shchitovidnoy zhelezy v Rossii posle Chernobylya. Moscow: Meditsina; 2006. (In Russ.)]
4. Annex A. Epidemiological studies of radiation carcinogenesis. In: UNSCEAR. Sources and effects of ionizing radiation. New York: United Nations, 1994. p. 11-183.
5. Tronko MD, Bogdanova TI, Komissarenko IV, et al. Thyroid carcinoma in children and adolescents in Ukraine after the Chernobyl nuclear accident. Cancer. 1999;86(1):149-156. doi: https://doi.org/ 10.1002/(sici)1097-0142(19990701)86:1<149::aid-cncr21 >3.0.co;2-a.
6. Williams ED, Abrosimov A, Bogdanova T, et al. Morphologic characteristics of Chernobyl-related childhood papillary thyroid carcinomas are independent of radiation exposure but vary with iodine intake. Thyroid. 2008;18(8):847-852. doi: https://doi.org/10.1089/thy.2008.0039.
7. Efanov AA, Brenner AV, Bogdanova TI, et al. Investigation of the relationship between radiation dose and gene mutations and fusions in post-Chernobyl thyroid cancer. J Natl Cancer Inst. 2018; 110(4):371-378. doi: https://doi.org/10.1093/jnci/djx209.
8. Watanabe T, Miyao M, Honda R, Yamada Y. Hiroshima survivors exposed to very low doses of A-bomb primary radiation showed a high risk for cancers. Environ Health Prev Med. 2008;13(5): 264-270. doi: https://doi.org/10.1007/s12199-008-0039-8.
9. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840): 499-505. doi: https://doi.org/10.1016/s0140-6736(12)60815-0.
10. Jargin SV. Thyroid cancer after Chernobyl: obfuscated truth. Dose Response. 2011;9(4):471-476. doi: https://doi.org/10.2203/dose-response.11-001.Jargin.
11. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135(5):569-577. doi: https://doi.org/10.1043/2010-0664-RAIR.1.
12. Rao PJ, Vardhini NV, Parvathi MV, et al. Prevalence of RET/PTC1 and RET/PTC3 gene rearrangements in Chennai population and its correlation with clinical parameters. Tumour Biol. 2014;35(10): 9539-9548. doi: https://doi.org/10.1007/s13277-014-1909-x.
13. Vuong HG, Altibi AM, Abdelhamid AH, et al. The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget. 2017;8(6):10637-10649. doi: https://doi.org/10.18632/oncotarget.12885.
14. Di Cristofaro J, Vasko V, Savchenko V, et al. ret/PTC1 and ret/PTC3 in thyroid tumors from Chernobyl liquidators: comparison with sporadic tumors from Ukrainian and French patients. Endocr Relat Cancer. 2005;12(1):173-183. doi: https://doi.org/10.1677/erc.1.00884.
15. Unger K, Zitzelsberger H, Salvatore G, et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89(9):4272-4279. doi: https://doi.org/10.1210/jc.2003-031870.
16. Яргин С.В. О перестройках RET/PTC в раке щитовидной железы после аварии на ЧАЭС. // Медицинская радиология и радиационная безопасность. – 2017. – Т. 62. – №2. – С. 47-52. [Jargin SV. On RET/PTC rearrangements in thyroid carcinoma after the Chernobyl accident. Medical radiology and radiation safety. 2017;62(2):47-52. (In Russ.)] doi: https://doi.org/10.12737/article_58f0b9573ddc88.95867893.
17. Jargin SV. On the RET rearrangements in Chernobyl-related thyroid cancer. J Thyroid Res. 2012;2012:373879. doi: https://doi.org/10.1155/2012/373879.
18. Мамчич В.И., Погорелов А.В. Хирургическое лечение узловых форм зоба после аварии на Чернобыльской АЭС. // Клиническая хирургия. –1992. – № 12. – С. 38-40. [Mamchich VI, Pogorelov AV. Khirurgicheskoe lechenie uzlovykh form zoba posle avarii na Chernobyl’skoyAES. Klin Khir. 1992;(12):38-40. (In Russ.)]
19. Демидчик Ю.Е., Контратович В.Л. Повторные хирургические вмешательства у детей, больных раком щитовидной железы. // Вопросы онкологии. – 2003. – Т. 49. – № 3. – С. 366-369. [Demidchik YE, Kontratovich VA. Povtornye khirurgicheskie vmeshatel’stva u detey, bol’nykhrakom shchitovidnoy zhelezy. Problems in oncology. 2003;49(3):366-369. (In Russ.)]
20. Демидчик Ю.Е., Шелкович С.Е. Опухоли щитовидной железы. – Минск: БелМАПО; 2016. [Demidchik YE, Shelkovich SE. Thyroid tumors. Minsk: BelMAPO; 2016. (In Russ.)]
21. Sugitani I. Management of papillary thyroid carcinoma in Japan. In: Yamashita S, Thomas G, editors. Thyroid cancer and nuclear accidents. Long-term aftereffects of Chernobyl and Fukushima. London: Elsevier; 2017. p. 185-194.
22. Jargin SV. Chernobyl-related thyroid cancer. Eur J Epidemiol. 2018; 33(4):429-431. doi: https://doi.org/10.1007/s10654-018-0391-y.
23. Saenko VA, Thomas GA, Yamashita S. Meeting report: the 5th International expert symposium in Fukushima on radiation and health. Environ Health. 2017;16(1):3. doi: https://doi.org/10.1186/s12940-017-0211-y.
24. Rumyantsev PO, Saenko VA, Ilyin AA, et al. Radiation exposure does not significantly contribute to the risk of recurrence of Chernobyl thyroid cancer. J Clin Endocrinol Metab. 2011;96(2): 385-393. doi: https://doi.org/10.1210/jc.2010-1634.
25. Kakudo K. How to handle borderline/precursor thyroid tumors in management of patients with thyroid nodules. Gland Surg. 2018; 7(Suppl 1):S8-S18. doi: https://doi.org/10.21037/gs.2017.08.02.
Review
For citations:
Jargin S.V. On the overdiagnosis and overtreatment of thyroid carcinoma after the Chernobyl accident. Clinical and experimental thyroidology. 2018;14(4):210-213. (In Russ.) https://doi.org/10.14341/ket10086

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).