Preview

Clinical and experimental thyroidology

Advanced search

Alternative biomarkers of thyroid cancer

https://doi.org/10.14341/ket12715

Abstract

Serum thyroglobulin is the main biomarker for postoperative monitoring of papillary thyroid cancer recurrence however, the high prevalence of the disease dictates the need to find a reliable indicator for laboratory diagnosis of the tumor process. The presence of antibodies to thyroglobulin affects the prognosis of the disease and determines the likelihood of relapse; however, it is impossible to influence the level of antibodies using currently available methods. More commonly, trends in anti-thyroglobulin levels at the time of disease detection and after radical treatment are considered, but there is disagreement on the interpretation of the results. Currently, various alternative biomarkers are being proposed and studied, the evaluation and comparison of which will be the subject of this literature review.

About the Authors

U. V. Buyvalenko
Endocrinology Research Centre
Russian Federation

Uliana V. Buyvalenko, resident

11 Dm. Ulyanova street, 117292, Moscow

eLibrary SPIN: 5772-5683



A. R. Levshina
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Anna R. Levshina

eLibrary SPIN 6503-1969

Moscow



E. E. Sakhnova
Endocrinology Research Centre

Ekaterina E. Sakhnova, MD

eLibrary SPIN: 4777-7937

Moscow



References

1. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. doi: https://doi.org/10.3322/caac.21565.

2. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi: https://doi.org/10.1089/thy.2015.0020

3. Kaprin AD, Starinskij VV, Petrova GV. ZlokachestvennyenovoobrazovanijavRossiiv 2015 godu (zabolevaemost’ ismertnost’). Moscow: MNIOI im. P.A. Gercena; 2017. (In Russ.).

4. Cheng SP, Lee JJ, Lin JL. et al. Characterization of thyroid nodules using the proposed thyroid imaging reporting and data system (TI-RADS) Shih-Ping. Head Neck. 2012;35:541-547. doi: https://doi.org/10.1002/hed.22985.

5. Verburg FA, Luster M, Cupini C, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: A clinical position statement. Thyroid. 2013;23(10):1211-1225. doi: https://doi.org/10.1089/thy.2012.0606

6. Spencer CA. Clinical utility of Thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615-3627. doi: https://doi.org/10.1210/jc.2011-1740

7. Giovanella L, Feldt-Rasmussen U, Verburg FA, et al. Thyroglobulin measurement by highly sensitive assays: Focus on laboratory challenges. Clin Chem Lab Med. 2015;53(9):1301-1314. doi: https://doi.org/10.1515/cclm-2014-0813

8. Algeciras-Schimnich A. Thyroglobulin measurement in the management of patients with differentiated thyroid cancer. Crit Rev Clin Lab Sci. 2018;55(3):205-218. doi: https://doi.org/10.1080/10408363.2018.1450830

9. Van Herle AJ, Uller RP, Matthews NI, et al. Radioimmunoassay for measurement of triiodothyronine in human serum. J Clin Invest. 1973;52:1320-1327. doi: https://doi.org/10.1172/JCI107303

10. Van Herle AJ, Uller RP. Elevated serum thyroglobulin. A marker of metastases in differentiated thyroid carcinomas. J Clin Invest. 1975;56(2):272-277. doi: https://doi.org/10.1172/jci108090

11. Giovanella L, Treglia G, Sadeghi R, et al. Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: A meta-analysis. J Clin Endocrinol Metab. 2014;99(2):440-447. doi: https://doi.org/10.1210/jc.2013-3156

12. Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. CurrOpin Endocrinol Diabetes Obes. 2014;21(5):394-404. doi: https://doi.org/10.1097/MED.0000000000000092

13. Kushnir MM, Rockwood AL, Roberts WL, et al. Measurement of Thyroglobulin by LC-MS/MS in Serum and Plasma in Presence of Anti-Thyroglobulin Autoantibodies. Clin Chem. 2013;59(6):982-990. doi: https://doi.org/10.1373/clinchem.2012.195594

14. Murphy DM, Castellanos-Rizaldos E, Makrigiorgos GM. Usefulness of a Thyroglobulin Liquid Chromatography — Tandem Mass SpectrometryAssay for Evaluation ofSuspected Heterophile Interference. Clin Chem. 2014;60(7):1014-1016. doi: https://doi.org/10.1373/clinchem.2014.221465

15. Azmat U, Porter K, Senter L, et al. Thyroglobulin Liquid ChromatographyTandem Mass Spectrometry Has a Low Sensitivity for Detecting Structural Disease in Patients with Antithyroglobulin Antibodies. Thyroid. 2017;27(1):74-80. doi: https://doi.org/10.1089/thy.2016.0210

16. Brian C. Netzel, Russell P. Grant ANH, et al. First steps towards harmonization of LC-MS/MS thyroglobulin assays. Clin Chem. 2017;62(1):297-299. doi: https://doi.org/10.1373/clinchem.2015.245266

17. Spencer C, Fatemi S. Thyroglobulin antibody (TgAb) methods — Strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2013;27(5):701-712. doi: https://doi.org/10.1016/j.beem.2013.07.003

18. Tae YK, Won BK, Eun SK, et al. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2005;90(3):1440-1445. doi: https://doi.org/10.1210/jc.2004-1771

19. Piccardo A, Arecco F, Puntoni M, et al. Focus on high-risk DTC patients: High postoperative serum thyroglobulin level is a strong predictor of disease persistence and is associated to progressionfree survival and overall survival. Clin Nucl Med. 2013;38(1):18-24. doi: https://doi.org/10.1097/RLU.0b013e318266d4d8

20. Latrofa F, Ricci D, Montanelli L, et al. Thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: Comparison of different assays and evaluation of causes of discrepancies. J Clin Endocrinol Metab. 2012;97(11):3974-3982. doi: https://doi.org/10.1210/jc.2012-2406

21. Zhao L, Liu M, Gao Y, et al. Glycosylation of sera thyroglobulin antibody in patients with thyroid diseases. Eur J Endocrinol. 2013;168(4):585-592. doi: https://doi.org/10.1530/EJE-12-0964

22. Spencer CA, Bergoglio LM, Kazarosyan M, et al. Clinical impact of thyroglobulin (Tg) and Tg autoantibody method differences on the management of patients with differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2005;90(10):5566-5575. doi: https://doi.org/10.1210/jc.2005-0671

23. Phan HTT, Jager PL, van der Wal JE, et al. The follow-up of patients with differentiated thyroid cancer and undetectable thyroglobulin (Tg) and Tg antibodies during ablation. Eur J Endocrinol. 2008;158(1):77-83. doi: https://doi.org/10.1530/EJE-07-0399

24. Tsushima Y, Miyauchi A, Ito Y, et al. Prognostic significance of changes in serum thyroglobulin antibody levels of pre-and post-total thyroidectomy in thyroglobulin antibody-positive papillary thyroid carcinoma patients. EndocrJ. 2013;60(7):871-876. doi: https://doi.org/10.1507/endocrj.EJ12-0410

25. Chiovato L, Latrofa F, Braverman LE, et al. Disappearance of Humoral Thyroid Autoimmunity after Complete. Ann Intern Med. 2003;139:346-351. doi: https://doi.org/10.7326/0003-4819-139-5_part_1-200309020-00010

26. Ozkan E, Soydal C, Araz M, et al. The additive clinical value of 18F-FDG PET/CT in defining the recurrence of disease in patients with differentiated thyroid cancer who have isolated increased antithyroglobulin antibody levels. Clin Nucl Med. 2012;37(8):755-758. doi: https://doi.org/10.1097/RLU.0b013e31825ae77b

27. Smooke-Praw S, Ro K, Levin O, et al. Thyroglobulin antibody levels do not predict disease status in papillary thyroid cancer. Clin Endocrinol (Oxf ). 2014;81(2):271-275. doi: https://doi.org/10.1111/cen.12421

28. Görges R, Maniecki M, Jentzen W, et al. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur J Endocrinol. 2005;153(1):49-55. doi: https://doi.org/10.1530/eje.1.01940

29. Boldarine VT, Maciel RMB, Guimarães GS, et al. Development of a sensitive and specific quantitative reverse transcription-polymerase chain reaction assay for blood thyroglobulin messenger ribonucleic acid in the follow-up of patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2010;95(4):1726-1733. doi: https://doi.org/10.1210/jc.2009-1354

30. Cradic KW, Milosevic D, Rosenberg AM, et al. Mutant BRAFT1799A can be detected in the blood of papillary thyroid carcinoma patients and correlates with disease status. J Clin Endocrinol Metab. 2009;94(12):5001-5009. doi: https://doi.org/10.1210/jc.2009-1349

31. Daniotti M, Vallacchi V, Rivoltini L, et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III-IV melanoma patients. Int J Cancer. 2007;120(11):2439-2444. doi: https://doi.org/10.1002/ijc.22598

32. Lee JC, Zhao JT, Clifton-Bligh RJ, et al. MicroRNA-222 and MicroRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013;119(24):4358-4365. doi: https://doi.org/10.1002/cncr.28254

33. Dettmer M, Perren A, Moch H, et al. Comprehensive microrna expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23(11):1383-1389. doi: https://doi.org/10.1089/thy.2012.0632

34. Yu S, Liu Y, Wang J, et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(6):2084-2092. doi: https://doi.org/10.1210/jc.2011-3059

35. Cantara S, Pilli T, Sebastiani G, et al. Circulating miRNA95 and miRNA190 are sensitive markers for the differential diagnosis of thyroid nodules in a Caucasian population. J Clin Endocrinol Metab. 2014;99(11):4190-4198. doi: https://doi.org/10.1210/jc.2014-1923

36. Pan W, Zhou L, Ge M, et al. Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum Mol Genet. 2016;25(9):1875-1884. doi: https://doi.org/10.1093/hmg/ddw056

37. Zhang D, Liu X, Wei B, et al. Plasma lncRNA GAS8-AS1 as a Potential Biomarker of Papillary Thyroid Carcinoma in Chinese Patients. Int J Endocrinol. 2017;2017:1-6. doi: https://doi.org/10.1155/2017/2645904

38. Kuzu F, Arpaci D, Unal M, et al. Midkine: A Novel Biomarker to Predict Malignancy in Patients with Nodular Thyroid Disease. Int J Endocrinol. 2016;2016:1-7. doi: https://doi.org/10.1155/2016/6035024

39. Meng Z, Tan J, Zhang G, et al. Evaluation of serum midkine as a biomarker in differentiated thyroid cancer. Life Sci. 2015;130:18-24. doi: https://doi.org/10.1016/j.lfs.2015.02.028

40. Li N, Zhang C, Meng Z, et al. Changes of serum midkine as a dynamic prognostic factor to monitor disease status in papillary thyroid cancer. Med (United States). 2018;97(36):1-7. doi: https://doi.org/10.1097/MD.0000000000012242

41. Shao H, Yu X, Wang C, et al. Midkine expression is associated with clinicopathological features and BRAF mutation in papillary thyroid cancer. Endocrine. 2014;46(2):285-291. doi:10.1007/s12020-013-0068-y.

42. Zhang Y, Meng Z, Zhang M, et al. Immunohistochemical evaluation of midkine and nuclear factor-kappa B as diagnostic biomarkers for papillary thyroid cancer and synchronous metastasis. Life Sci. 2014;118(1):39-45. doi: https://doi.org/10.1016/j.lfs.2014.09.025

43. Moll R, Divo M, Langbein L. The human keratins: Biology and pathology. Histochem Cell Biol. 2008;129(6):705-733. doi: https://doi.org/10.1007/s00418-008-0435-6

44. Giovanella L, Imperiali M, Trimboli P. Role of serum cytokeratin 19 fragment (Cyfra 21.1) as a prognostic biomarker in patients with differentiated thyroid cancer. Sci Rep. 2017;7(1):1-7. doi: https://doi.org/10.1038/s41598-017-07915-0

45. Hu Z, Zhao P, Zhang K, et al. Evaluation of Serum Vascular Adhesion Protein-1 as a Potential Biomarker in Thyroid Cancer. Int J Endocrinol. 2016;2016:1-7. doi: https://doi.org/10.1155/2016/6312529

46. Baldane S, Ipekci SH, Sozen M, et al. Mean platelet volume could be a possible biomarker for papillary thyroid carcinomas. Asian Pacific J Cancer Prev. 2015;16(7):2671-2674. doi: https://doi.org/10.7314/APJCP.2015.16.7.2671

47. Bayhan Z, Zeren S, Ozbay I, et al. Mean platelet volume as a biomarker for thyroid carcinoma. IntSurg. 2016;101(1):50-53. doi: https://doi.org/10.9738/INTSURG-D-15-00123.1


Review

For citations:


Buyvalenko U.V., Levshina A.R., Sakhnova E.E. Alternative biomarkers of thyroid cancer. Clinical and experimental thyroidology. 2022;18(1):21-28. (In Russ.) https://doi.org/10.14341/ket12715

Views: 12173


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)