The role of artificial intelligence in the differential thyroid nodules ultrasound diagnostics
https://doi.org/10.14341/ket12730
Abstract
Advances in the development and improvement of medical technologies and methods of processing medical images make it possible to highlight clinically significant characteristics that were not previously available to classical methods of medical imaging. Ultrasound diagnostics of thyroid gland nodules has a huge potential medical images processing. The article presents an overview of the existing ultrasound classification systems for thyroid nodules malignancy and the prospects for the development of intellectual tools TIRADS (Thyroid Imaging Reporting and Data System) classification system.
About the Authors
A. A. TrukhinRussian Federation
Alexey A. Trukhin; eLibrary SPIN: 4398-9536
11 bld 2, Dm. Ulyanova street, 117036 Moscow
Competing Interests:
none
S. M. Zakharova
Russian Federation
Svetlana M. Zakharova - MD, PhD; eLibrary SPIN-код: 9441-4035.
Moscow
Competing Interests:
none
M. Y. Dunaev
Russian Federation
Maxim E. Dunaev
Moscow
Competing Interests:
none
M. P. Isaeva
Russian Federation
Maria P. Isaeva, MD; eLibrary SPIN: 6205-5170.
Moscow
Competing Interests:
none
A. A. Garmash
Russian Federation
Alexandr A. Garmash
Moscow
Competing Interests:
none
E. A. Troshina
Russian Federation
Ekaterina A. Troshina - MD, PhD, Professor; eLibrary SPIN: 8821-8990.
Moscow
Competing Interests:
none
References
1. Bel'tsevich DG, Vanushko VE, Mel'nichenko GA, Rumyantsev PO, Fadeyev VV. Russian Association of Endocrinologists Clinic Guidelines for Thyroid Nodules Diagnostic and Treatment. Endocrine Surgery. 2016;10(1):5-12. (In Russ.). doi: https://doi.org/10.14341/serg201615-12
2. Guth S, Theune U, Aberle J, et al. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 2009;39(8):699-706. doi: https://doi.org/10.1111/j.1365-2362.2009.02162.x
3. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost' i smertnost') / Pod red. Kaprina A.D., Starinskogo V.V., Petrovoi G.V. — Moscow: MNIOI im. P.A. Gertsena; 2021. – 252 p. (In Russ.).
4. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer. 2017; 123(3):372-381. doi: https://doi.org/10.1002/cncr.30360
5. Russ G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography. 2016;35(1):25-38. doi: https://doi.org/10.14366/usg.15027
6. Horvath E, Majlis S, Rossi R, et al. An Ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748-1751. doi: https://doi.org/10.1210/jc.2008-1724
7. Russ G, Royer B, Bigorgne C, et al. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol. 2013;168(5):649-655. doi: https://doi.org/10.1530/EJE-12-0936
8. Na DG, Baek JH, Sung JY, et al. Thyroid imaging reporting and data system risk stratification of thyroid nodules: Categorization based on solidity and echogenicity. Thyroid. 2016;26(4):562-572. doi: https://doi.org/10.1089/thy.2015.0460
9. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi: https://doi.org/10.1089/thy.2015.0020
10. Gharib H, Papini E, Garber JR, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for clinical practice for the diagnosis and management of thyroid nodules — 2016 update appendix. Endocr Pract. 2016;22(1):1-60. doi: https://doi.org/10.4158/EP161208.GL
11. Tessler FN, Middleton WD, Grant EG. Thyroid Imaging Reporting and Data System (TI-RADS): A User’s Guide. Radiology. 2018;287(1):29-36. doi: https://doi.org/10.1148/radiol.2017171240
12. Persichetti A, Di Stasio E, Coccaro C, et al. Inter- and Intraobserver Agreement in the Assessment of Thyroid Nodule Ultrasound Features and Classification Systems: A Blinded Multicenter Study. Thyroid. 2020;30(2):237-242. doi: https://doi.org/10.1089/thy.2019.0360
13. Choi, S.H.; Kim, E.K.; Kwak, J.Y.; Kim, M.J.; Son, E.J. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules. Thyroid 2010, 20, 167–172.
14. Eoin F. Cleere, Matthew G. Davey, Shane O’Neil, Mel Corbett, John P O’Donnell, Sean Hacking Ivan J. Keogh, Aoife J. Lowery, Michael J. Kerin. Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography—A Systematic Review and Meta-Analysis Diagnostics 2022 Mar 24;12(4):794
15. Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017;35:18-31. doi: https://doi.org/10.1016/j.media.2016.05.004
16. Cheng C-H, Liu W-X. Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method. J Clin Med. 2018;7(6):124. doi: https://doi.org/10.3390/jcm7060124
17. Hržić F, Štajduhar I, Tschauner S, et al. Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection. Entropy. 2019;21(4):338. doi: https://doi.org/10.3390/e21040338
18. Remonti LR, Kramer CK, Leitão CB, et al. Thyroid Ultrasound Features and Risk of Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Thyroid. 2015;25(5):538-550. doi: https://doi.org/10.1089/thy.2014.0353
19. Virmani V, Hammond I. Sonographic Patterns of Benign Thyroid Nodules: Verification at Our Institution. Am J Roentgenol. 2011;196(4):891-895. doi: https://doi.org/10.2214/AJR.10.5363
20. Brito JP, Gionfriddo MR, Al Nofal A, et al. The Accuracy of Thyroid Nodule Ultrasound to Predict Thyroid Cancer: Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2014;99(4):1253-1263. doi: https://doi.org/10.1210/jc.2013-2928
21. Nguyen DT, Kang JK, Pham TD, et al. Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. Sensors. 2020;20(7):1822. doi: https://doi.org/10.3390/s20071822
22. Varga B, Farkas J, Malis A, et al. RFC 9037. Deterministic Networking (DetNet) Data Plane: MPLS over IEEE 802.1 Time-Sensitive Networking (TSN) [Internet]. 2021. Available from: https://www.rfc-editor.org/info/rfc9037
23. Ronneberger O, Fisher F, Broks T. U-Net: svertochnye seti dlja segmentacii biomedicinskih izobrazhenij. 2015 Available from: https://github.com/qubvel/segmentation_models.pytorch#examples. (In Russ.)
24. Zhou Z, Siddiquee MR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Arizona State University. 2018. Available from: https://arxiv.org/pdf/1807.10165.pdf
25. Peng S, Liu Y, Lv W, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Heal. 2021;3(4):e250-e259. doi: https://doi.org/10.1016/S2589-7500(21)00041-8
26. Fan T, Wang G, Li Y, Wang H. MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access. 2020;8(4):179656-179665. doi: https://doi.org/10.1109/ACCESS.2020.3025372
27. Chaurasia A, Culurciello E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation, 2017. Available from: https://arxiv.org/abs/1707.03718
Supplementary files
|
1. Fig. 1. Anechogenic nodule of the thyroid gland (EU-TIRADS 2). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(102KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Isoechoic thyroid gland nodule with even contours (EU-TIRADS 3). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(103KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Thyroid gland nodule with reduced echogenicity and smooth contours (EU-TIRADS 4). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(103KB)
|
Indexing metadata ▾ |
|
4. Fig. 4. Hypoechoic thyroid gland nodule with uneven contours and microcalcifications (EU-TIRADS 5). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(100KB)
|
Indexing metadata ▾ |
|
5. Fig. 5. Thyroid nodule mask, category 5 EU-TIRADS. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(115KB)
|
Indexing metadata ▾ |
Review
For citations:
Trukhin A.A., Zakharova S.M., Dunaev M.Y., Isaeva M.P., Garmash A.A., Troshina E.A. The role of artificial intelligence in the differential thyroid nodules ultrasound diagnostics. Clinical and experimental thyroidology. 2022;18(2):32-38. (In Russ.) https://doi.org/10.14341/ket12730

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).