Preview

Clinical and experimental thyroidology

Advanced search

The role of artificial intelligence in the differential thyroid nodules ultrasound diagnostics

https://doi.org/10.14341/ket12730

Abstract

Advances in the development and improvement of medical technologies and methods of processing medical images make it possible to highlight clinically significant characteristics that were not previously available to classical methods of medical imaging. Ultrasound diagnostics of thyroid gland nodules has a huge potential medical images processing. The article presents an overview of the existing ultrasound classification systems for thyroid nodules malignancy and the prospects for the development of intellectual tools TIRADS (Thyroid Imaging Reporting and Data System) classification system.

About the Authors

A. A. Trukhin
Endocrinology Research Centre; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Alexey A. Trukhin; eLibrary SPIN: 4398-9536

11 bld 2, Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



S. M. Zakharova
Endocrinology Research Centre
Russian Federation

Svetlana M. Zakharova - MD, PhD; eLibrary SPIN-код: 9441-4035.

Moscow


Competing Interests:

none



M. Y. Dunaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Maxim E. Dunaev

Moscow


Competing Interests:

none



M. P. Isaeva
Endocrinology Research Centre
Russian Federation

Maria P. Isaeva, MD; eLibrary SPIN: 6205-5170.

Moscow


Competing Interests:

none



A. A. Garmash
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Alexandr A. Garmash

Moscow


Competing Interests:

none



E. A. Troshina
Endocrinology Research Centre
Russian Federation

Ekaterina A. Troshina - MD, PhD, Professor; eLibrary SPIN: 8821-8990.

Moscow


Competing Interests:

none



References

1. Bel'tsevich DG, Vanushko VE, Mel'nichenko GA, Rumyantsev PO, Fadeyev VV. Russian Association of Endocrinologists Clinic Guidelines for Thyroid Nodules Diagnostic and Treatment. Endocrine Surgery. 2016;10(1):5-12. (In Russ.). doi: https://doi.org/10.14341/serg201615-12

2. Guth S, Theune U, Aberle J, et al. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest. 2009;39(8):699-706. doi: https://doi.org/10.1111/j.1365-2362.2009.02162.x

3. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost' i smertnost') / Pod red. Kaprina A.D., Starinskogo V.V., Petrovoi G.V. — Moscow: MNIOI im. P.A. Gertsena; 2021. – 252 p. (In Russ.).

4. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: What is new and what has changed? Cancer. 2017; 123(3):372-381. doi: https://doi.org/10.1002/cncr.30360

5. Russ G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography. 2016;35(1):25-38. doi: https://doi.org/10.14366/usg.15027

6. Horvath E, Majlis S, Rossi R, et al. An Ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748-1751. doi: https://doi.org/10.1210/jc.2008-1724

7. Russ G, Royer B, Bigorgne C, et al. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol. 2013;168(5):649-655. doi: https://doi.org/10.1530/EJE-12-0936

8. Na DG, Baek JH, Sung JY, et al. Thyroid imaging reporting and data system risk stratification of thyroid nodules: Categorization based on solidity and echogenicity. Thyroid. 2016;26(4):562-572. doi: https://doi.org/10.1089/thy.2015.0460

9. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi: https://doi.org/10.1089/thy.2015.0020

10. Gharib H, Papini E, Garber JR, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for clinical practice for the diagnosis and management of thyroid nodules — 2016 update appendix. Endocr Pract. 2016;22(1):1-60. doi: https://doi.org/10.4158/EP161208.GL

11. Tessler FN, Middleton WD, Grant EG. Thyroid Imaging Reporting and Data System (TI-RADS): A User’s Guide. Radiology. 2018;287(1):29-36. doi: https://doi.org/10.1148/radiol.2017171240

12. Persichetti A, Di Stasio E, Coccaro C, et al. Inter- and Intraobserver Agreement in the Assessment of Thyroid Nodule Ultrasound Features and Classification Systems: A Blinded Multicenter Study. Thyroid. 2020;30(2):237-242. doi: https://doi.org/10.1089/thy.2019.0360

13. Choi, S.H.; Kim, E.K.; Kwak, J.Y.; Kim, M.J.; Son, E.J. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules. Thyroid 2010, 20, 167–172.

14. Eoin F. Cleere, Matthew G. Davey, Shane O’Neil, Mel Corbett, John P O’Donnell, Sean Hacking Ivan J. Keogh, Aoife J. Lowery, Michael J. Kerin. Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography—A Systematic Review and Meta-Analysis Diagnostics 2022 Mar 24;12(4):794

15. Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017;35:18-31. doi: https://doi.org/10.1016/j.media.2016.05.004

16. Cheng C-H, Liu W-X. Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method. J Clin Med. 2018;7(6):124. doi: https://doi.org/10.3390/jcm7060124

17. Hržić F, Štajduhar I, Tschauner S, et al. Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection. Entropy. 2019;21(4):338. doi: https://doi.org/10.3390/e21040338

18. Remonti LR, Kramer CK, Leitão CB, et al. Thyroid Ultrasound Features and Risk of Carcinoma: A Systematic Review and Meta-Analysis of Observational Studies. Thyroid. 2015;25(5):538-550. doi: https://doi.org/10.1089/thy.2014.0353

19. Virmani V, Hammond I. Sonographic Patterns of Benign Thyroid Nodules: Verification at Our Institution. Am J Roentgenol. 2011;196(4):891-895. doi: https://doi.org/10.2214/AJR.10.5363

20. Brito JP, Gionfriddo MR, Al Nofal A, et al. The Accuracy of Thyroid Nodule Ultrasound to Predict Thyroid Cancer: Systematic Review and Meta-Analysis. J Clin Endocrinol Metab. 2014;99(4):1253-1263. doi: https://doi.org/10.1210/jc.2013-2928

21. Nguyen DT, Kang JK, Pham TD, et al. Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. Sensors. 2020;20(7):1822. doi: https://doi.org/10.3390/s20071822

22. Varga B, Farkas J, Malis A, et al. RFC 9037. Deterministic Networking (DetNet) Data Plane: MPLS over IEEE 802.1 Time-Sensitive Networking (TSN) [Internet]. 2021. Available from: https://www.rfc-editor.org/info/rfc9037

23. Ronneberger O, Fisher F, Broks T. U-Net: svertochnye seti dlja segmentacii biomedicinskih izobrazhenij. 2015 Available from: https://github.com/qubvel/segmentation_models.pytorch#examples. (In Russ.)

24. Zhou Z, Siddiquee MR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Arizona State University. 2018. Available from: https://arxiv.org/pdf/1807.10165.pdf

25. Peng S, Liu Y, Lv W, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Heal. 2021;3(4):e250-e259. doi: https://doi.org/10.1016/S2589-7500(21)00041-8

26. Fan T, Wang G, Li Y, Wang H. MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation. IEEE Access. 2020;8(4):179656-179665. doi: https://doi.org/10.1109/ACCESS.2020.3025372

27. Chaurasia A, Culurciello E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation, 2017. Available from: https://arxiv.org/abs/1707.03718


Supplementary files

1. Fig. 1. Anechogenic nodule of the thyroid gland (EU-TIRADS 2).
Subject
Type Исследовательские инструменты
View (102KB)    
Indexing metadata ▾
2. Fig. 2. Isoechoic thyroid gland nodule with even contours (EU-TIRADS 3).
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾
3. Fig. 3. Thyroid gland nodule with reduced echogenicity and smooth contours (EU-TIRADS 4).
Subject
Type Исследовательские инструменты
View (103KB)    
Indexing metadata ▾
4. Fig. 4. Hypoechoic thyroid gland nodule with uneven contours and microcalcifications (EU-TIRADS 5).
Subject
Type Исследовательские инструменты
View (100KB)    
Indexing metadata ▾
5. Fig. 5. Thyroid nodule mask, category 5 EU-TIRADS.
Subject
Type Исследовательские инструменты
View (115KB)    
Indexing metadata ▾

Review

For citations:


Trukhin A.A., Zakharova S.M., Dunaev M.Y., Isaeva M.P., Garmash A.A., Troshina E.A. The role of artificial intelligence in the differential thyroid nodules ultrasound diagnostics. Clinical and experimental thyroidology. 2022;18(2):32-38. (In Russ.) https://doi.org/10.14341/ket12730

Views: 1050


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)