Preview

КЛИНИКО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ СПОРАДИЧЕСКОГО НЕМЕДУЛЛЯРНОГО РАКА ЩИТОВИДНОЙ ЖЕЛЕЗЫ

https://doi.org/10.14341/ket20062116-20

Полный текст:

Аннотация

Роль соматических мутаций при спорадическом раке щитовидной железы (РЩЖ) в настоящее время изучена недостаточно. Вероятно, они не являются этиологическими факторами канцерогенеза, но, по данным многих исследователей, могут участвовать в патогенезе РЩЖ, определяя его клиническое течение и прогноз. На сегодняшний день основными протоонкогенами, участвующими в развитии злокачественных новообразований ЩЖ считаются RET/PTC, TRK, PTEN, P53, RAS, MET, PFARγ. С помощью генетического исследования ученые пытаются решать проблемы дифференциальной диагностики РЩЖ (цитокератин-19, цитокератин-20, антиген мезотелиальных клеток (Hector Battifora MEsotelial (cell), или HBME-1) и потери гетерозиготности (LOH) в коротком плече 3-й хромосомы (ген VHL - von Hippel Lindau, 3р26). Недавно в зарубежной литературе появились сообщения об обнаружении активирующих мутаций в гене BRAF, наиболее часто встречающихся при меланоме и папиллярном РЩЖ. Прогноз РЩЖ может отражать потеря гетерозиготности (Loss Of Heterozygosity, LOH) как биологическая поломка вообще, а также изменения в гене опухолевой супрессии P53, которые чреваты снижением дифференцировки опухоли, что значительно ухудшает прогноз заболевания. Таким образом, у генетиков и клиницистов остается еще много спорных вопросов о роли генома в патогенезе спорадических случаев РЩЖ. Необходимы дальнейшие исследования в данной области для уточнения влияния генетических поломок на активность опухолевого роста, и следовательно, для определения прогноза клинического течения заболевания с целью выбора адекватной тактики лечения в каждом конкретном случае.

Об авторах

U Rumjanzeva

Отделение радиохирургического лечения закрытыми радионуклидами


P Rumjanzev

Отделение радиохирургического лечения закрытыми радионуклидами


A Ilyin

Отделение радиохирургического лечения закрытыми радионуклидами


Список литературы

1. Bevan S., Pal T., Greenberg C.R. et al. A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial non-medullary thyroid cancer: confirmation of linkage to TCO1 // J. Clin. Endocrnol. Metab. 2001. V. 86. N 8. P. 3701-3704.

2. Brose M.S., Volpe P., Feldman M. et al. BRAF and RAS mutations in human lung cancer and melanoma // Cancer Res. 2002. V. 62. N 23. P. 6997-7000.

3. Castro M.R., Bergert E.R., Goellner J.R. et al. Immunohistochemical analysis of sodium iodine symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake // J. Clin. Endocrinol. Metab. 2001. V. 86. N 11. P. 5627-5632.

4. Cohen Y., Xing M., Mambo E. et al. BRAF mutation in papillary thyroid carcinoma // J. Natl. Cancer Inst. 2003. V. 95. N 8. P. 625-627.

5. Denizot A., Delfino C., Dutour-Meyer A. et al. Evaluation of quantitative measurement of thyroglobulin mRNA in the follow-up of differentiated thyroid cancer // Thyroid. 2003. V. 13. N 9. P. 867-872.

6. Di Renzo M.F., Olivero M., Ferro S. et al. Overexpression of the cMet/HGF receptor gene in human thyroid carcinomas. // Oncogene. 1992. V. 7. N 12. P. 2549-2553.

7. Dobashi Y., Sakamoto A., Sugimura H. et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma // Am. J. Surg. Pathol. 1993. V. 17. N 4. P. 375-381.

8. Dohan O., De la Vieja A., Paroder V. The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance // Endocr. Rev. 2003. V. 24. N 1. P. 48-77.

9. Donghi R., Longoni A., Pilotti S. et al. Gene p53 mutations are resticted to poorly differentiated and undifferentiated carcinomas of the thyroid gland // J. Clin. Invest. 1993. V. 91. N 4. P. 1753-1760.

10. Fugazzola L., Pierotti M.A., Vigano E. et al. Molecular and biochemical analysis of RET/PTC4, a novel oncogenic rearrangement between RET and ELE1 genes in a post-Chernobyl papillary thyroid cancer // Oncogene. 1996. V. 13. N 5. P. 1093-1097.

11. Gimm O., Perren A., Weng L.P. et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors // Am. J. Pathol. 2000. V. 156. N 5. P. 1693-1700.

12. Gimm O., Chi H., Dahia L.M. et al. Somatic mutation and germline variants of MINPP1, a phosphatase gene located in proximity to PTEN on 10q23.3, in follicular thyroid carcinomas // J. Clin. Endocrinol. Metab. 2001. V. 86. N 4. P. 1801-1805.

13. Gimm O. Thyroid cancerm // Cancer letters. 2001. V. 163. P. 143-156.

14. Nagataki S., Nystrom E. Epidemiology and primary prevention of thyroid cancer // Thyroid. 2002. V. 12. N 10. P. 889-894.

15. Grammatopoulos D., Elliott Y., Smith S.C. et al. Measurement of thyroglobulin mRNA in peripheral blood as an adjunctive test for monitoring thyroid cancer // J. Clin. Pathol: Mol. Pathol. 2003. V. 56. N 3. P. 162-166.

16. Greco A., Pierotti M.A., Bongarzone I. et al. Trk-T1 is a novel oncogene formed by the fusion of tpr and trk genes in human papillary thyroid carcinomas // Oncogene. 1992. V. 7. N 2. P. 237-242.

17. Greco A., Miranda C., Pagliardini S. et al. Chromosome rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes // Genes Chrom. Cancer. 1997. V. 19. N 2. P. 112-123.

18. Haugen B.R., Nawaz S., Markhom N. et al. Telomerase activity in benign and malignant thyroid tumors // Thyroid. 1997. V. 7. N 3. P. 334-342.

19. Herrmann M.A., Hay I.D., Bartelt D.H. Jr. et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers // J Clin Invest. 1991. V. 88. N 5. P. 1596-1604.

20. Houlston R.S., Stratton M.R. Genetics of non-medullary thyroid cancer // Q. J. Med. 1995. V. 88. N 10. P. 685-693.

21. Hunt J.L., Yim J.H., Tometsko M. et al. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors // Surgery. 2003. V. 134. N 6. P. 1043-1047; discussion P. 1047-1048.

22. Kesmodel S.B., Terhune K.P., Canter R.J. et al. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma // Surgery. 2003. V. 134. N 6. P. 1005-1012.

23. Kim K.H., Kang D.W., Kim S.H. et al. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population // Yonsei Med. J. 2004. V. 45. N 5. P. 818-821.

24. Kitamura Y., Shimizu S., Tanaka K. et al. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p,11, 17, 19p, and 22q // Genes chrom. Cancer. 2000. V. 27. N 3. P. 244-251.

25. Kimura E.T., Nikiforova M.N., Zhu Z. et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma // Cancer Res. 2003. V. 63. N 7. P. 1454-1457.

26. Klugbauer S., Lengfelder E., Demidchick E.P. et al. A new form of RET rearrangement in thyroid carcinomas of children after the Chernobyl accident // Oncogene. 1996. V. 13. N 5. P. 1099-1102.

27. Kumagai A., Namba H., Saenko V.A. et al. Low frequency of B RAFT1796A mutations in childhood thyroid carcinomas // J. Clin. Endocrinol. Metab. 2004. V. 89. N 9. P. 4280-4284.

28. Lesueur F., Stark M., Tocco T. et al. Genetic geterogenity in familial non-medullary thyroid carcinoma: exclusion of linkage to RET, MNG 1 and TCO in 56 families // J. Clin. Endocrinol. Metab. 1999. V. 84. N 6. P. 2157-2162.

29. Lewinski A. Thyroid carcinoma: diagnostic and therapeutic approach; genetic background (review) // Endocr. Regul. 2000. V. 34. P. 99-113.

30. Loh K.C. Familial nonmedullary thyroid carcinoma: a metareview of case series // Thyroid. 1997.V. 7. N 1. P. 107-113.

31. Lote K., Andersen K., Nordal E. et al. Familial occurrence of papillary thyroid carcinoma // Cancer. 1980. V. 46. N 5. P. 1291-1297.

32. Marques A.R., Espadinha C., Catarino A.L. et al. Expression of PAX8-PPARr rearrangement in thyroid tumors: RT-PTC and immunohistochemical analyses // Am. J. Surg. Pathol. 2002. V. 87. N 8. P. 3947-3952.

33. Martins L., Matsuo S.E., Ebina K.N. et al. Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors // J. Clin. Endocrinol. Metab. 2002. V. 87. N 10. P. 4806-4810.

34. Mase T., Funahashi H., Koshikawa T. et al. HBME-1 Immunostaining in thyroid tumors especially in follicular neoplasm // Endocr. J. 2003. V. 50. N 2. P. 173-177.

35. Namba H., Nakashima M., Hayashi T. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers // J. Clin. Endocrinol. Metab. 2003. V. 88. N 9. P. 4393-4397.

36. Nikiforov Y.E., Rowland J.M., Bove K.E. et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children // Cancer Res. 1997. V. 57. N 9. P. 1690-1694.

37. Nikiforova M.N., Kimura E.T., Gandhi M. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas // J. Clin. Endocrinol. Metab. 2003. V. 88. N 11. P. 5399-5404.

38. Peyssonnaux C., Eychene A. The Raf/MEK/ERK pathway: new concepts of activation // Biol. Cell. 2001. V. 93. N 1. P. 53-62.

39. Pierotti M.A., Bongarzone I., Borrello M.G. et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells // Genes Chrom. Cancer. 1996. V. 16. N 1. P. 1-14.

40. Rios A., Rodriguez J.M., Illana J. et al. Familial papillary carcinoma of the thyroid: report of three families. // Eur. J. Surg. 2001. V. 167. N 5. P. 339-343.

41. Ron E., Kleinerman R.A., Boice J.D. et al. A population-based casecontrol study of thyroid cancer // J. Natl. Cancer Inst. 1987. V. 79. N 1. P. 1-12.

42. Santoro M., Dathan N.A., Berlingheri M.T. et al. Molecular characterization of RET/PTC3, a novel rearranged version of the RET oroto-oncogene in a human thyroid papillary carcinoma // Oncogene. 1994. V. 9. N 2. P. 509-516.

43. Schlumberger M. Inheritable forms of thyroid carcinoma // Thyroid International. 2000. N 4. P. 3-8.

44. Schmitz-Winnenthal F.H., Weckauf H., Haufe S. et al. Detection and prognostic relevance of cytokeratin 20 in differentiated and anaplastic thyroid carcinomas by RT-PCR // Surgery. 2003. V. 134. N 6. P. 964-971.

45. Shi Y., Zou M., Schmidt H. et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area // Cancer Res. 1991. V. 51. N 10. P. 2690-2693.

46. Tallini G., Asa S.L. RET oncogene activation in papillary thyroid carcinoma. // Adv. Anat. Pathol. 2001. V. 8. N 6. P. 345-354.

47. Tuttle R.M., Becker D.V. The Chernobyl accident and its consequences: update at the millennium // Semin. Nucl. Med. 2000. V. 30. N 2. P.133-140.

48. Williams E.D. Mechanisms and pathogenesis of thyroid cancer in animals and man. // Mutation Res. 1995. V. 333. N 1. P. 123-129.

49. Wingo S.T., Ringel M.D., Anderson J.S. et al. Quantitative reserve transcription-PTR measurement of thyroglobulin mRNA in peripheral blood in healthy subjects // Clin. Chem. 1999. V. 45. N 6. P. 785-789.


Для цитирования:


Rumjanzeva U., Rumjanzev P., Ilyin A. КЛИНИКО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ СПОРАДИЧЕСКОГО НЕМЕДУЛЛЯРНОГО РАКА ЩИТОВИДНОЙ ЖЕЛЕЗЫ. Клиническая и экспериментальная тиреоидология. 2006;2(1):16-20. https://doi.org/10.14341/ket20062116-20

For citation:


., ., . Clinical and Genetic Aspects of Sporadic Non-Medullar Thyroid Cancer. Clinical and experimental thyroidology. 2006;2(1):16-20. (In Russ.) https://doi.org/10.14341/ket20062116-20

Просмотров: 55


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)