Preview

Clinical and experimental thyroidology

Advanced search

MicroRNAs – promising molecular markers for detecting cancer in thyroid nodules

https://doi.org/10.14341/ket9774

Abstract

Thyroid nodules are one of the most common thyroid diseases. The prevalence of thyroid nodules is estimated to be 2–65% depending on the detection methods. Yet despite the high frequency of thyroid nodules only about 5–10% of such nodules are malignant. Fine needle aspiration cytology of the thyroid nodule is currently the primary diagnostic tool for determining the nature of a thyroid nodule. Now, the fine needle aspiration biopsy is the gold standard for diagnosing thyroid cancer but in 30% of cases the cytological conclusion is uncertain. Cytological research is not enough to diagnose benign and malignant tumors. The need to improve the effectiveness of fine needle aspiration biopsy findings led to the search for new diagnostic biomarkers and the creation of diagnostic panels on their basis for their application in the diagnosis of uncertain nodules. Determination of molecular markers in the thyroid aspirate will allow to differentiate benign and malignant tumors more accurately at the preoperative stage and reduce the number of inappropriate surgery. The review article presents the characteristics of MicroRNAs, allowing them to be used in preoperative diagnosis of thyroid nodules. Diagnostic panels based on gene mutations and MicroRNA expression demonstrating high sensitivity and specificity of these methods are also indicated. Analysis of literature indicates that molecular analysis of fine needle aspiration genetic material from thyroid nodal formations demonstrates great prospects of prognosis, diagnosis and treatment of thyroid cancer. However, there is no sufficient evidence to recommend or to prohibit of utilization this molecular testing during the cytological conclusion of indeterminate thyroid nodules. Molecular analysis (MicroRNA) is a perspective method for evaluation of thyroid nodal formations with indeterminate cytology, however, this method requires further study and improvement.

About the Authors

Olga S. Serdyukova

Institute of Internal and Preventive Medicine – branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences


Russian Federation

worker



Sergei E. Titov

Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences


Russian Federation

 PhD



Ekaterina S. Malakhina

Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences


Russian Federation

MD, PhD



Oksana D. Rymar

Institute of Internal and Preventive Medicine – branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences


Russian Federation

MD



References

1. Khalil AB, Dina R, Meeran K, et al. Indeterminate thyroid nodules: a pragmatic approach. Eur Thyroid J. 2018;7(1):39-43. doi: https://doi.org/10.1159/000484600.

2. Witczak J, Taylor P, Chai J, et al. Predicting malignancy in thyroid nodules: feasibility of a predictive model integrating clinical, biochemical, and ultrasound characteristics. Thyroid Res. 2016;9:4. doi: https://doi.org/10.1186/s13044-016-0033-y.

3. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1): 1-133. doi: https://doi.org/10.1089/thy.2015.0020.

4. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-1346. doi: https://doi.org/10.1089/thy.2017.0500.

5. Paschke R, Cantara S, Crescenzi A, et al. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur Thyroid J. 2017; 6(3):115-129. doi: https://doi.org/10.1159/000468519.

6. Якушина В.Д., Лернер Л.В., Казубская Т.П., и др. Молекулярно-генетическая структура фолликулярно-клеточного рака щитовидной железы. // Клиническая и экспериментальная тиреоидология. – 2016. – Т. 12. – №2. – С. 55-64. [Yakushina VD, Lerner LV, Kazubskaya TP, et al. Molecular genetics of follicular cell thyroid carcinoma. Clinical and experimental thyroidology. 2016;12(2):55-64. (In Russ.)] doi: https://doi.org/10.14341/ket201625564.

7. Березкина И.С., Саприна Т.В., Зима А.П., и др. Возможности традиционной и жидкостной цитологии в сочетании с иммуноцитохимической детекцией некоторых молекулярных маркеров в дооперационной диагностике высокодифференцированного рака щитовидной железы. // Клиническая и экспериментальная тиреоидология. – 2016. – Т. 12. – №1. – С. 38-45. [Beryozkina IS, Saprina TV, Zima AP, et al. Possibilities traditional and liquid-based cytology combined with immunocytochemical detection of some molecular markers in the preoperative diagnosis of well-differentiated thyroid cancer. Clinical and experimental thyroidology.2016;12(1):38-45. (In Russ.)] doi: https://doi.org/10.14341/ket201613845.

8. Kang YY, Liu Y, Wang ML, et al. Construction and analyses of the microRNA-target gene differential regulatory network in thyroid carcinoma. PLoS One. 2017;12(6):e0178331. doi: https://doi.org/10.1371/journal.pone.0178331.

9. Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Asadi-Samani M, Mobini GR. Serum miRNAs as biomarkers for the diagnosis and prognosis of thyroid cancer: a comprehensive review of the literature. Eur Thyroid J. 2017;6(4):171-177. doi: https://doi.org/10.1159/000468520.

10. Dettmer M, Perren A, Moch H, et al. Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid. 2013;23(11):1383-1389. doi: https://doi.org/10.1089/thy.2012.0632.

11. Swierniak M, Wojcicka A, Czetwertynska M, et al. In-depth characterization of the microRNA transcriptome in normal thyroid and papillary thyroid carcinoma. J Clin Endocrinol Metab. 2013; 98(8):E1401-1409. doi: https://doi.org/10.1210/jc.2013-1214.

12. Mancikova V, Castelblanco E, Pineiro-Yanez E, et al. MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Mod Pathol. 2015;28(6):748-757. doi: https://doi.org/10.1038/modpathol.2015.44.

13. Li M, Song Q, Li H, et al. Circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS One. 2015;10(7):e0132403. doi: https://doi.org/10.1371/journal.pone.0132403.

14. Wang Z, Zhang H, Zhang P, et al. Upregulation of miR-2861 and miR-451 expression in papillary thyroid carcinoma with lymph node metastasis. Med Oncol. 2013;30(2):577. doi: https://doi.org/10.1007/s12032-013-0577-9.

15. Sondermann A, Andreghetto FM, Moulatlet AC, et al. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin Exp Metastasis. 2015;32(6):521-530. doi: https://doi.org/10.1007/s10585-015-9724-3.

16. Dong S, Jin M, Li Y, et al. MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncol Rep. 2016;35(4):2151-2158. doi: https://doi.org/10.3892/or.2016.4604.

17. Minna E, Romeo P, Dugo M, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7(11):12731-12747. doi: https://doi.org/10.18632/oncotarget.7262.

18. Jikuzono T, Kawamoto M, Yoshitake H, et al. The miR-221/222 cluster, miR-10b and miR-92a are highly upregulated in metastatic minimally invasive follicular thyroid carcinoma. Int J Oncol. 2013;42(6):1858-1868. doi: https://doi.org/10.3892/ijo.2013.1879.

19. Wojtas B, Ferraz C, Stokowy T, et al. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol. 2014;388(1-2):1-9. doi: https://doi.org/10.1016/j.mce.2014.02.011.

20. Stokowy T, Wojtas B, Krajewska J, et al. A two miRNA classifier differentiates follicular thyroid carcinomas from follicular thyroid adenomas. Mol Cell Endocrinol. 2015;399:43-49. doi: https://doi.org/10.1016/j.mce.2014.09.017.

21. Mancikova V, Castelblanco E, Pineiro-Yanez E, et al. MicroRNA deep-sequencing reveals master regulators of follicular and papillary thyroid tumors. Mod Pathol. 2015;28(6):748-757. doi: https://doi.org/10.1038/modpathol.2015.44.

22. Chu YH, Lloyd RV. Medullary thyroid carcinoma: recent advances including MicroRNA expression. Endocr Pathol. 2016;27(4):312-324. doi: https://doi.org/10.1007/s12022-016-9449-0.

23. Dettmer M, Vogetseder A, Durso MB, et al. MicroRNA expression array identifies novel diagnostic markers for conventional and oncocytic follicular thyroid carcinomas. J Clin Endocrinol Metab. 2013;98(1):E1-7. doi: https://doi.org/10.1210/jc.2012-2694.

24. Sun D, Han S, Liu C, et al. Microrna-199a-5p functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma. Med Sci Monit. 2016;22:1210-1217. doi: https://doi.org/10.12659/msm.895788.

25. Santarpia L, Calin GA, Adam L, et al. A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer. 2013;20(6):809-823. doi: https://doi.org/10.1530/ERC-13-0357.

26. Hudson J, Duncavage E, Tamburrino A, et al. Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol. 2013;95(1):62-67. doi: https://doi.org/10.1016/j.yexmp.2013.05.001.

27. Duan L, Hao X, Liu Z, et al. MiR-129-5p is down-regulated and involved in the growth, apoptosis and migration of medullary thyroid carcinoma cells through targeting RET. FEBS Lett. 2014;588(9):1644-1651. doi: https://doi.org/10.1016/j.febslet.2014.03.002.

28. Nikiforova MN, Tseng GC, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93(5):1600-1608. doi: https://doi.org/10.1210/jc.2007-2696.

29. Mian C, Pennelli G, Fassan M, et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid. 2012;22(9): 890-896. doi: https://doi.org/10.1089/thy.2012.0045.

30. Shen R, Liyanarachchi S, Li W, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid. 2012;22(1):9-16. doi: https://doi.org/10.1089/thy.2011.0081.

31. Agretti P, Ferrarini E, Rago T, et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur J Endocrinol. 2012;167(3):393-400. doi: https://doi.org/10.1530/EJE-12-0400.

32. Panebianco F, Mazzanti C, Tomei S, et al. The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer. 2015;15:918. doi: https://doi.org/10.1186/s12885-015-1917-2.

33. Paskas S, Jankovic J, Zivaljevic V, et al. Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol. 2015;123(8):471-479. doi: https://doi.org/10.1002/cncy.21554.

34. Stokowy T, Wojtas B, Jarzab B, et al. Two-miRNA classifiers differentiate mutation-negative follicular thyroid carcinomas and follicular thyroid adenomas in fine needle aspirations with high specificity. Endocrine. 2016;54(2):440-447. doi: https://doi.org/10.1007/s12020-016-1021-7.

35. Lee JC, Zhao JT, Clifton-Bligh RJ, et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer. 2013;119(24):4358-4365. doi: https://doi.org/10.1002/cncr.28254.

36. Cantara S, Pilli T, Sebastiani G, et al. Circulating miRNA95 and miRNA190 are sensitive markers for the differential diagnosis of thyroid nodules in a Caucasian population. J Clin Endocrinol Metab. 2014;99(11):4190-4198. doi: https://doi.org/10.1210/jc.2014-1923.

37. Graham ME, Hart RD, Douglas S, et al. Serum microRNA profiling to distinguish papillary thyroid cancer from benign thyroid masses. J Otolaryngol Head Neck Surg. 2015;44:33. doi: https://doi.org/10.1186/s40463-015-0083-5.

38. Li M, Song Q, Li H, et al. Correction: circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS One. 2015;10(8):e0135549. doi: https://doi.org/10.1371/journal.pone.0135549.

39. Lee YS, Lim YS, Lee JC, et al. Differential expression levels of plasma-derived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol. 2015;51(1):77-83. doi: https://doi.org/10.1016/j.oraloncology.2014.10.006.

40. Yu S, Liu X, Zhang Y, et al. Circulating microRNA124-3p, microRNA9-3p and microRNA196b-5p may be potential signatures for differential diagnosis of thyroid nodules. Oncotarget. 2016;7(51): 84165-84177. doi: https://doi.org/10.18632/oncotarget.12389.

41. Yoruker EE, Terzioglu D, Teksoz S, et al. MicroRNA expression profiles in papillary thyroid carcinoma, benign thyroid nodules and healthy controls. J Cancer. 2016;7(7):803-809. doi: https://doi.org/10.7150/jca.13898.

42. Rosignolo F, Sponziello M, Giacomelli L, et al. Identification of thyroid-associated serum microRNA profiles and their potential use in thyroid cancer follow-up. J Endocr Soc. 2017;1(1):3-13. doi: https://doi.org/10.1210/js.2016-1032.

43. Samsonov R, Burdakov V, Shtam T, et al. Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumour Biol. 2016;37(9):12011-12021. doi: https://doi.org/10.1007/s13277-016-5065-3.

44. Yu S, Liu Y, Wang J, et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(6):2084-2092. doi: https://doi.org/10.1210/jc.2011-3059.

45. Zhang M, Lin O. Molecular testing of thyroid nodules: a review of current available tests for fine-needle aspiration specimens. Arch Pathol Lab Med. 2016;140(12):1338-1344. doi: https://doi.org/10.5858/arpa.2016-0100-RA.

46. Poller DN, Glaysher S. Molecular pathology and thyroid FNA. Cytopathology. 2017;28(6):475-481. doi: https://doi.org/10.1111/cyt.12492.

47. Valderrabano P, Zota VE, McIver B, et al. Molecular assays in cytopathology for thyroid cancer. Cancer Control. 2015;22(2):152-157. doi: https://doi.org/10.1177/107327481502200205.

48. Патент РФ на изобретение №2569154/ 26.10.15. Колесников Н.Н., Титов С.Е., Ахмерова Л.Г., и др. Cпособ дифференциальной диагностики новообразований щитовидной железы человека. [Patent RUS №2569154/ 26.10.15. Kolesnikov NN, Titov SE, Ahmerova LG, et al. Sposob differentsial’noy diagnostiki novoobrazovaniy shchitovidnoy zhelezy cheloveka. (In Russ.)]

49. Патент РФ на изобретение №2548773/ 24.03.2015. Колесников Н.Н., Титов С.Е., Ахмерова Л.Г., и др. Способ определения доброкачественных и злокачественных новообразований щитовидной железы человека. [Patent RUS №2548773/ 24.03.2015. Kolesnikov NN, Titov SE, Ahmerova LG, et al. Sposob opredeleniyadobrokachestvennykh i zlokachestvennykh novoobrazovaniy shchitovidnoy zhelezy cheloveka. (In Russ.)]

50. Titov SE, Ivanov MK, Karpinskaya EV, et al. miRNA profiling, detection of BRAF V600E mutation and RET-PTC1 translocation in patients from Novosibirsk oblast (Russia) with different types of thyroid tumors. BMC Cancer. 2016;16:201. doi: https://doi.org/10.1186/s12885-016-2240-2.


Supplementary files

1. Tabl. 1
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
2. Tabl. 2
Subject
Type Исследовательские инструменты
Download (12KB)    
Indexing metadata ▾
3. Tabl. 3
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
4. Tabl. 4
Subject
Type Исследовательские инструменты
Download (12KB)    
Indexing metadata ▾

Review

For citations:


Serdyukova O.S., Titov S.E., Malakhina E.S., Rymar O.D. MicroRNAs – promising molecular markers for detecting cancer in thyroid nodules. Clinical and experimental thyroidology. 2018;14(3):140-148. (In Russ.) https://doi.org/10.14341/ket9774

Views: 2327


ISSN 1995-5472 (Print)
ISSN 2310-3787 (Online)